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Abstract

English

Polaritonic chemistry is an emergent interdisciplinary field in which the strong inter-
action of organic molecules with the electromagnetic field is exploited in order to ma-
nipulate the chemical structure and reactions of the system. This thesis is devoted to
the theoretical study of the internal structure and processes in the organic polaritons
that arise in these hybrid light–matter systems. In most theoretical descriptions of the
strong coupling regime between light and organic molecules, the latter are treated using
simplified descriptions in which the role of the internal nuclear structure is significantly
reduced. Our work fully embraces this molecular complexity by combining the usual the-
oretical descriptions of light found in cavity quantum electrodynamics with the complete
molecular characterization used in chemistry, built upon the concept of potential energy
surfaces. This leads to the development of a theory in which the tools and concepts of
chemistry can be generalized to hybrid light–matter systems.

While in standard chemistry we make a distinction between light and matter, this is
no longer true in polaritonic chemistry. The two entities become profoundly mixed, com-
pletely altering the properties of the whole. The features of the system are a product
of the interaction of the molecule with the electromagnetic vacuum, redefined by the
confinement of an optical cavity. Remarkably, the material and chemical properties can
be strongly altered even when there is no strong external input of energy. This motivates
the field for more experimental and theoretical efforts with the goal of introducing such
chemical control in technological applications. In our work we theoretically study polari-
tonic chemistry in order to further understand the current experiments and challenge
them with new predictions.

In order to build our theory, we first present an overview of the theoretical background
necessary of quantum chemistry and cavity quantum electrodynamics. We then combine
both descriptions in order to study the molecular structure in strong coupling, analyzing
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Abstract

the limits of validity of the Born–Oppenheimer approximation and demonstrating how
the cavity induces nuclear correlations between spatially separated molecules. We thus
develop a theory of polaritonic chemistry in which we formally study the system for
an arbitrary number of molecules in terms of polaritonic potential energy surfaces. Of
particular relevance is the study of collective phenomena in strong coupling, which is
central in reshaping the energy landscape of hybrid systems. This theory is then applied
to two general molecular models that present some form of photochemical process. In
the first one, we demonstrate the general suppression of photochemical reactions by
influencing the excited-state energy surfaces that govern the dynamics of such processes.
Then, in the second molecular model, we prove the possibility of opening novel reaction
pathways by smartly manipulating the surfaces based on the theory developed previously.
This would enable the possibility of triggering many photochemical reactions over a large
number of molecules after absorption of one single external photon, something forbidden
in standard photochemistry. Finally, we study the ground-state structural modifications
of the light–matter system, investigating the possibility of influencing the reactivity of
thermally-driven chemical reactions. We demonstrate that quantum electrodynamical
effects are indeed able to strongly modify the reactivity in the ground state, observing
a collective enhancement for large ensembles of adequately oriented molecules.
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Castellano
La química polaritónica es un campo emergente interdisciplinario en el que la interacción
fuerte de moléculas orgánicas con el campo electromagnético es aprovechada con el fin de
manipular la estructura y las reacciones químicas del sistema. Esta tesis está dedicada al
estudio teórico de la estructura y procesos internos propios de los polaritones orgánicos
que se manifiestan en estos sistemas híbridos luz–materia. En la mayoría de descripciones
teóricas del régimen de acoplo fuerte entre luz y moléculas orgánicas, estas son tratadas
mediante descripciones simplificadas en las que el rol de la estructura nuclear interna es
significativamente reducido. Nuestro trabajo acoge totalmente esta complejidad molec-
ular mediante la combinación de descripciones teóricas de la luz, típicamente usadas
en electrodinámica cuántica, con la caracterización molecular total usada en química,
que está fundamentada en el concepto de superficies de energía potencial. Esto lleva al
desarrollo de una teoría en la cual las herramientas y conceptos propios de la química
pueden ser generalizados a sistemas híbridos luz–materia.

Mientras que en la química convencional existe una distinción clara entre luz y ma-
teria, esta no es posible en la química polaritónica. Ambas entidades se entremezclan
íntimamente, logrando así una alteración completa de las propiedades de todo el sis-
tema. Las características del sistema son el producto de la interacción de la molécula
con el vacío electromagnético, el cual es redefinido debido al confinamiento ocasionado
por la cavidad óptica. Notablemente, las propiedades materiales y químicas del sistema
pueden ser fuertemente alteradas incluso si no existe un gran aporte energético externo.
Tal fenómeno motiva más actividad experimental y teórica con el objetivo de introducir
este control químico en aplicaciones tecnológicas. En este trabajo estudiamos la química
polaritónica desde un punto de vista teórico, para así comprender los trabajos experi-
mentales vigentes y retar a la comunidad con nuevas predicciones teóricas.

Con el objetivo de construir nuestra teoría, empezamos presentando una recopilación
del trasfondo teórico necesario de química y electrodinámica cuántica. Después, combi-
namos ambas descripciones con el fin de estudiar la estructura molecular en el regimen
de acoplo fuerte, y analizar así los límites de la aproximación de Born–Oppenheimer,
demostrando de esta manera cómo la cavidad puede inducir correlaciones nucleares en-
tre moleculas espacialmente distantes. Desarrollamos con esto una teoría de la química
polaritónica en la cual estudiamos formalmente el sistema para un número arbitrario de
moléculas en términos de superficies polaritonicas de energía potencial. Es este estudio
son particularmente relevante los fenómenos colectivos en el regimen de acoplo fuerte,
los cuales son fundamentales en la modificación de la estructura energética de sistemas
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Abstract

híbridos. Después aplicamos esta teoría a dos modelos moleculares generales que pre-
sentan algún tipo de proceso fotoquímico. En el primero demostramos la posibilidad de
inhibir reacciones fotoquímicas mediante la manipulación de la superficie energética del
estado excitado que gobierna la dinámica de dicho proceso. Seguidamente, en el segundo
modelo molecular, demostramos la posibilidad de abrir rutas hacia nuevos tipos de reac-
ciones químicas mediante la manipulación de las superficies energéticas, basándonos en la
teoría antes desarrollada. Esto posibilitaría el desencadenamiento de múltiples reacciones
químicas en diferentes moléculas después de que el sistema absorba un único fotón, algo
completamente imposible en la fotoquímica convencional. Finalmente, estudiamos las
modificaciones estructurales del estado fundamental del sistema luz–materia, buscando
la posibilidad de controlar la reactividad de reacciones químicas activadas térmicamente.
Demostramos que existen efectos de electrodinámica cuántica que pueden modificar la
reactividad del estado fundamental, observando además un incremento de estos efectos
en grupos grandes de moléculas adecuadamente orientadas.
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1 | Introduction

1.1. Motivation

From the first photosynthetic organisms, approximately three billion years ago, to the
invention of the laser in the twentieth century, light has had a crucial role in shaping
the universe and our lives. Light has always interacted with living organisms, providing
energy and information from their environment. Evolution towards complex life forms
was rendered possible due to the oxygenation of the Earth produced by early photo-
synthetic cyanobacterias [1]. In order to survive and thrive, animals need to assimilate
information from their surroundings, for which they developed photosensitive cells which
later evolved into sophisticated organs: the eyes [2]. Light is the means through which
humans see each other and form societies, and people throughout the world and across
history have understood its importance.

From the earliest times, philosophers in ancient India and Greece considered the ques-
tion of light, writing on concepts such as reflection and refraction. Based on some of these
texts, in the 11th century the arab scholar Ibn al-Haytham1 (also known as Alhazen)
wrote about optics and formulated precise laws of refraction [3]. During the 17th and
18th centuries, an intense scientific debate arose questioning the nature of light. On one
hand, Isaac Newton developed his corpuscular theory, arguing that the straight rays of
light demonstrated its particle nature. On the other hand, many of his contemporaries
such as Robert Hooke and Christiaan Huygens maintained that light was composed
of waves. This was later supported by Thomas Young’s double-slit experiment, where
wave characteristics such as interference could be seen on light, leading to the general
acceptance of its wave nature.

We owe the first great revolution in the study of light to James Clerk Maxwell. By

1As a remark, the controlled experimental testing of his scientific hypotheses is considered the first
achievement of the modern scientific method. Because of this, together with his pioneering studies
on the behavior of light, he is considered the “father of modern optics”.
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1 Introduction

the middle of the 19th century a considerable amount of theoretical knowledge about
electricity and magnetism had been gathered. In 1861 Maxwell condensed and corrected
it into a set of four equations2, and stated that electricity and magnetism are two man-
ifestations from the same substance, and that light is an electromagnetic (EM) wave
propagating according to those laws. With this, the corpuscular theory appeared to be
completely dead, but soon a new revolution would yet again challenge our perception of
reality: quantum mechanics.

In 1900 Max Plank found the solution to the ultraviolet catastrophe related to the
radiation of a black body. In his explanation there was one revolutionary assumption:
light was emitted and absorbed in discrete packets of energy. In 1905 this same hypoth-
esis was used by Albert Einstein to explain the photoelectric effect. These two events
eventually led to the birth of quantum mechanics and its concept of wave–particle du-
ality, as well as to coining the idea of “photon”. The quantum theory of light began in
the 1920s when Paul Dirac introduced a full quantum description of light and matter [4],
laying the foundations of the theory of quantum electrodynamics (QED). This stands
as one of the most successful scientific theories in history, and its understanding soon
brought a plethora of technological development and applications, such as the laser [5],
nowadays a basic tool in medicine, industry, and scientific research among others, or the
charge-coupled device (CCD) [6], central for digital imaging.

In the following decades, fundamental research and innovative experimental techniques
allowed humanity to efficiently control light and matter at the nanoscale. This lead to
the dawn of nanophotonics, which has emerged as a dynamic and prolific research area
with the promise of a next generation of photonic devices [7]. Opportunities of avant-
garde technology arise thanks to achievements such as superresolution microscopy [8],
the discovery of metamaterials [9], improved solar cells [10], and nanolitography [11, 12],
to cite just a few. Many of the different areas of nanophotonics have as a common
ingredient the manipulation of the electromagnetic field at the nanoscale. Of particular
interest to this thesis is the tailoring of EM fields to achieve strong interactions between
light and matter. With this it is possible to enter the strong coupling regime, where
light and matter become profoundly mixed. The excitations of such a hybrid system do
not have a purely material or light nature, but rather they inherit properties of both
constituents, giving rise to unusual phenomena. These novel excitations (which often
can be understood as emerging quasiparticles) are known as polaritons, and constitute

2Originally Maxwell’s equations were composed by 20 different expressions. The simplification to only
four equations is credited to Oliver Heaviside.
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1.2 Strong light–matter coupling

a promising pathway towards engineering novel materials [13].

One crucial realization of strong coupling is achieved with organic matter [14]. This
has attracted a lot of interest in the last decades due to the possibility of achieving very
strong interactions even at room temperature, a limit in which quantum features often
are washed away by thermal fluctuations. Furthermore, in these materials strong coupling
offers an efficient and elegant pathway to shape the material and chemical properties of
organic molecules [15]. The work developed in this thesis constitutes a comprehensive
theoretical study of the manipulation of chemical properties and reactions in organic
materials. This introductory chapter first summarizes the fundamentals of light–matter
interaction at the nanoscale, reviewing the possible experimental platforms to achieve
strong coupling with organic molecules. Then we present a state-of-the-art review of the
field which this thesis is focused on: polaritonic chemistry.

1.2. Strong light–matter coupling
The lengthy development of quantum electrodynamics had plenty of difficulties on its
path. Possibly one of the most notable ones is the appearance of diverging energies in
vacuum, cured by renormalization theory. In simple terms, all measurable parameters
of particles that can couple to the electromagnetic field are unavoidably “dressed” by
local vacuum fluctuations. This effect produces small corrections in energy levels, first
observed by Willis Lamb in the hydrogen spectrum [16]. While these corrections cannot
be switched off, they do depend on the electromagnetic environment and can thus be
modified by manipulating the distribution of modes upon imposing physical limitations
to the field, e.g., by placing mirrors or conductors around the atoms. This was first
noted by Purcell [17], who predicted that the rate of spontaneous emission for a nuclear
magnetic moment should be enhanced by restricting the number of possible EM modes
in a resonant electric circuit to only one strong mode. While the prediction was made
for nuclear magnetic moments, the argument is valid for any kind of quantum emit-
ter3 in resonant cavities. In the consecutive years, several studies followed dealing with
spontaneous emission rates in atoms near metallic surfaces. Of particular importance is
the study by Casimir and Polder [18], where they discuss how vacuum fluctuations can
produce a force between an atom and a conducting plane.

All of this new theoretical interest marked the birth of cavity quantum electrodynamics

3We generalize this to “quantum emitters”, which may represent any entity that can absorb or emit
light, such as atoms, molecules, quantum dots, nanoparticles, etc.
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(CQED) [19]. In a nutshell, the goal of CQED is to isolate a quantum emitter inside a box
so that the effects of the electromagnetic vacuum on the emitter are observable. This can
be achieved by increasing the strength of the interaction between light and matter. The
light–matter coupling strength is of course a relative concept, and we need to compare
it to some energy scale to gauge it. Typically, two different regimes are considered: the
weak and the strong coupling regimes. The regime of interaction depends on how large
the energy scale of the coupling is compared to the decay rate of both the light and
matter constituents. In the following, we offer a simple discussion of such interaction
regimes, for a more involved analysis see section 2.3.

1.2.1. Regimes of interaction between light and matter
When the light–matter energy exchange is slower than the individual decay and dephas-
ing rates (loss of excitation and quantum coherence respectively) of both elements, the
system is said to be in the weak coupling regime. This is the most common scenario in
nature, where the interaction between material (electronic and nuclear) and electromag-
netic degrees of freedom can be treated perturbatively [20, 21]. This describes familiar
processes such as absorption and emission. The excitation of a quantum emitter has
a non-zero probability to be transmitted to the electromagnetic field in the form of a
photon (spontaneous emission, see Figure 1.1(a)). This is translated in terms of the
excited-state lifetime, after which the emitter is said to have emitted a photon. This
is typically described by a theory of open quantum systems [22, 23], where the emitter
is coupled to a dissipative environment representing the continuum of EM modes that
surrounds it. The transition probability depends on the local density of states of the
electromagnetic environment of the emitter. Therefore, by placing the emitter inside a
resonant cavity or near a conducting surface it is possible to control the emission rate
via the so-called Purcell effect mentioned above.

If the relative coupling strength is further increased, the electromagnetic field can no
longer be treated perturbatively, and ultimately the system will enter the strong coupling
regime. Both photons and material excitations have to be treated on equal footing.
The system then will be able to coherently exchange energy between both constituents.
While typically the exponential decay of the excitations masks this energy exchange
as simple emission or absorption phenomena, i.e., the excitation is transferred from
the emitter to the electromagnetic field only once, and vice versa, in strong coupling
an oscillatory behavior will be observed before loss of excitation, as a rapid series of
emission and reabsorption processes (the so-called Rabi oscillations, see Figure 1.1(b)).
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1.2 Strong light–matter coupling

Figure 1.1: The two main regimes of light and matter interaction in QED (a) weak and (b)
strong coupling. Left: conceptual sketches of a single two-level quantum emitter (a qubit, the
simplest matter description) in free space, weakly coupled to the EM field, and inside a cavity,
strongly coupled to the cavity EM field. Right: time evolution of the population of the excited
state of the qubit, showing simple spontaneous emission in weak coupling and Rabi oscillations
in strong coupling.

This population exchange between light and matter indicates that photons and material
excitations are no longer the proper eigenstates of the system [21]. Instead, new hybrid
excitations arise, called polaritons. These states can also absorb and emit light, but
at different frequencies than the original emitter, being referred to upper and lower
polaritons, for the larger and smaller energies respectively. The difference in energy is
the so-called Rabi frequency ΩR, and corresponds to the oscillation frequency of the
emission-absorption cycle between the excited emitter and the photon.

One exceptional feature of strong coupling arises when a collection of emitters in-
teract with the EM field. The entire ensemble collectively interacts with the field and
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can be understood as a “giant quantum emitter” with a very large dipole moment. The
frequency of oscillations is enhanced ΩR =

√
NΩ0, where N is the number of emitters

and Ω0 is the corresponding single-emitter Rabi frequency. This phenomenon is known
as collective strong coupling, and is a very common approach to experimentally achieve
strong coupling, since coupling strengths of individual emitters are often too weak to be
notable. The collective nature of such systems is of utmost importance in many strong
coupling effects, as it can correlate emitters that are far away in distance (and therefore
not connected) through the EM field. We note that collective strong coupling and polari-
tons are not an inherently quantum phenomenon, but they arise when electromagnetic
modes interact with classical Lorentzian (damped) oscillators, leading also to the

√
N

enhancement when a large number of oscillators are present. Indeed, polaritons appeared
first in the context of classical optics as “collective oscillation of polarization charges in
the matter” sustained by interfaces that separate media with permittivities of opposite
signs [24, 25].
If the strength of the interactions keeps increasing, the system enters the ultra-strong

coupling (USC) regime, where some additional counter-intuitive effects emerge. For ex-
ample, the total number of excitations in the system is not conserved, which potentially
leads to the global ground state of the system to being dressed by the EM field, even
showing purely quantum properties such as squeezing and entanglement [26]. There is
no clear agreement on the coupling strength required to consider the system to be in the
USC regime, as it heavily depends on the particular system [27–31]. However, signatures
typically connected to USC usually appear when the Rabi splitting energy becomes a
significant fraction of the transition frequency of the quantum emitter excited state [32].

1.2.2. Experimental strong coupling realizations
Up to now we have discussed the regimes of interaction in a very broad fashion, overlook-
ing the different possibilities to achieve strong coupling in a realistic setup. Polaritons
can be achieved in a wide range of systems of various natures, dimensionalities, and
energy scales. Experiments can routinely achieve polaritons in solid-state and organic
systems, for structures ranging from a few nanometers to milimetric distances, and for
microwaves and ultraviolet light. The fundamental purpose or desired technological ap-
plication is ultimately what determines the experimental realization. For example, some
applications may require the device to work in microwave frequencies, such as in the
case of superconducting artificial atoms coupled to on-chip cavities [33–35]. Or perhaps
we favor the ability of the system to perform at room temperature, for which organic
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polaritons offer a more suitable platform [36–38]. Both the quantum emitter and the
EM mode components of the system present fundamental advantages and restrictions
that shape the possibilities for a particular strong coupling realization. In the following,
we present these conditions and discuss some examples of possible single-emitter and
collective strong coupling systems.

In order to discuss the fundamental limitations of the interaction, it is vital to analyze
the nature of the light–matter coupling strength. As we present in detail in chapter 2,
this depends, to a very good approximation, on the electric field amplitude of the system
at the position r0 of the emitter and the dipole moment of the emitter [21]:

g(r0) = µ · E(r0). (1.1)

There are two main alternatives to effectively increase the coupling strength in order to
reach the strong coupling regime4. The first is to efficiently choose the right quantum
emitters, favoring large dipole moments. Note that in quantum mechanics the dipole mo-
ment is an operator, and finding a “large” and “aligned” dipole moment is not necessarily
a straightforward task. For example, a quantum emitter may have a very small ground-
state permanent dipole, but present a huge transition dipole moment between ground
and excited states, making it suitable for strong coupling. The second approach is to
engineer cavities that present very large electric field amplitudes. This can be achieved
by confining the EM field in very small volumes, as the electric field associated to a EM
mode depends on its mode volume as |E| ∼ 1/

√
V . We define this in a proper manner in

section 2.3; for now let us focus on the ability of a cavity to concentrate the electric field
in very small volumes. Below we review some examples of experimental strong coupling
realizations, focusing first on some different cavities presently used to tailor the EM field,
and then discussing the variety of possible quantum emitters in which strong coupling
is currently viable.

Examples of EM cavities

There are two fundamental approaches to experimentally achieve strong coupling by
manipulating the EM environment of the quantum emitters. The first approach is to
minimize the losses of the system so that Rabi oscillations can be observed within the
lifetime of the cavity and the excited state of the emitter. This is based on a very efficient
trapping of light so that a photon inside takes a very long time to exit the system. The

4While not explicitly listed, increasing the emitter density is often the main approach to achieve strong
coupling is some experimental realizations.
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Figure 1.2: Conceptual depictions of some model structures employed to confine light. (a)
Fabry–Perot microcavity based on distributed Bragg reflectors. (b) Three-dimensional photonic
crystal. (c) Surface plasmon polaritons on a structured metallic surface. (d) Bow-tie nanoan-
tenna hosting a strongly localized surface plasmon resonance.

second is to localize the light in tiny volumes, thus increasing the electric field amplitude
and therefore boosting the light–matter coupling. The two methods are not mutually
exclusive; an ideal cavity would incorporate a great confinement of the EM field while
trapping light indefinitely (that is, without loss). Some reviews on different kinds of
cavities can be found in the literature [39–41]. Let us now overview some examples of
cavities that reach the strong coupling regime.

Possibly the simplest structures to achieve strong coupling are the planar microcavities
in which two flat mirrors are brought close together so that only a few light wavelengths
can fit in between them. The so-called Fabry–Perot microcavity can trap light very
efficiently in rather large mode volumes (typically above the diffraction limit, V & λ3

EM,
where λEM is the mode wavelength), which often requires using very large number of
emitters to enhance the interaction and achieve measurable Rabi splittings. Depending
on the choice of material for the reflectors we can sort between metal and distributed
Bragg reflector (DBR) microcavities. The former are easier to fabricate, composed of two
parallel layers of a noble metal enclosing the material laterally. However, the fundamental
parameters of the metals limit the efficiency of the cavity by introducing losses. This
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is greatly improved in the case of DBR microcavities (see Figure 1.2(a)), in which the
metal planes are replaced by multilayers of alternating refractive index materials such
that for certain wavelength ranges the reflectivity is close to unity. This offers very large
photon lifetimes, even reaching hundreds of picoseconds [42]. Planar microcavities offer
confinement in only one direction, while in the other two dimensions the EM modes can
be arbitrarily extended. Therefore in these cavities photons can be excited with an in-
plane momentum, thus displaying a continuous dispersion relation, which opens a wide
range of possibilities for polariton condensation and superfluidity [43, 44]. A more intense
confinement can be achieved by forming micropillars that exploit total internal reflection.
While this greatly increases the losses, it also offers possibilities of novel devices that can
present exotic features such as topological properties [45].

Photonic crystals [46] can be thought of extensions of the DBR structure to two
and three dimensions. By generating a three-dimensional crystal (see for example Fig-
ure 1.2(b)) with the appropiate combination of electromagnetic and electronic band
structure, it is possible to rigorously forbid light propagation and scattering inside. By
then creating a defect in this crystalline structure, light states can be confined without
possibility of escaping, leading to the observation of a Rabi splitting [47]. This would
theoretically provide one of the most efficient EM field confinement with tiny losses, how-
ever, current experimental realizations have not demonstrated this yet. Two-dimensional
photonic crystals are presently the most promising option showing great figures of merit
[48].

Plasmonic cavities [41] offer a great alternative to achieve strong coupling, offering
sub-wavelength EM field confinement. In here we will consider two types of cavities
that support plasmons of slightly different nature. The first type consists on engineered
material interfaces which support surface plasmon polaritons (SPPs) [49, 50]. These arise
when external light is coupled to the plasmonic excitations of a metal surface. Due to
the momentum mismatch between surface plasmons in the metallic surface and light
in air, these cannot straightforwardly be excited. Instead, it is possible to shine light
passing through a high-refractive-index prism to the metal surface. Alternatively, it is
possible to incorporate an extra wave vector to the system by devising a surface with a
periodic grating [51] (see scheme in Figure 1.2(c)). The quantum emitters located at the
surface will be inside the evanescent field of the plasmonic mode, which can present very
high electric field amplitudes. Experiments of organic materials on top of these systems
have led to strong coupling between SPPs and electronic excitations [52] and nuclear
vibrations [53].

Other plasmonic cavities commonly used in strong coupling are based on localized
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Figure 1.3: Examples of different quantum emitters. (a) A rubidium atom strongly coupled to a
whispering-gallery-mode microresonator, itself coupled to an optical waveguide, as in reference
[60]. (b) Simplified atomistic structure of an nitrogen-vacancy center in diamond. (c) DBR
microcavity with an inorganic semiconductor quantum well in the center hosting Wannier–
Mott excitons (schematically depicted in zoom). (d) Monolayer of WSe2 (a transition metal
dichalcogenide) coupled to a photonic crystal cavity, as in reference [61].

surface plasmons (LSPs). These cavities exploit the geometric properties of intricate
metallic structures to achieve the best EM field confinement in the literature, however
also showing great losses. Strong coupling has been investigated in a plethora of different
cavities hosting LSPs, such as nanorods [54, 55], nanoprisms [37], and bow-tie nanoan-
tennas [56–58] (see Figure 1.2(d)). Recently the single-molecule strong coupling limit has
been achieved at ambient conditions in the nanoparticle-on-mirror cavity [38], showing
a mode volume for the optically active frequency of ∼ 40 nm3. It even has been found
that inside the gap of these cavities, atomic-sized defects can localize LSPs below one
cubic nanometer [59].

Examples of quantum emitters

The choice of quantum emitters heavily relies on the desired properties of the strong cou-
pling realization. As we discussed above, large transition dipole moments favor larger
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coupling strengths, which lead to an easier observation of the mode splitting. More-
over, the binding energy of the material excitation can also affect the conditions of the
experiment, since relatively high temperatures can dissociate excitons with low-energy
binding energies (e.g. quantum-well excitons in inorganic semiconductors are typically
only supported at cryogenic temperatures). Another important quality of the emitters is
the ability to achieve high densities, since strong coupling ultimately depends on

√
N/V .

Note that the coupling strength increases as ∼ 1/
√
V and the Rabi splitting with ∼

√
N ,

therefore it is desirable to fit as many quantum emitters inside the mode volume of the
EM field. More parameters that make each quantum emitter unique and potentially more
suitable for achieving robust strong coupling are their inertness (i.e., chemical stability)
or the possibility of manipulating them in order to fabricate distinct devices. In the fol-
lowing we will review some strong coupling realizations with different types of quantum
emitters.

The first experimental observation of Rabi oscillations was made for sodium Rydberg
atoms inside Fabry–Perot cavities in the microwave domain [62]. Later, a direct obser-
vation of the energy splitting in the absorption spectrum was made in an optical cavity
[63], achieving for caesium even single-atom strong coupling [64]. This lead to an elegant
and sensitive way to detect single atoms and deterministically trap atoms near in the
cavity [19, 65]. The great distance between the electron and the nucleus in a Rydberg
state makes it possible to have a rather large dipole moment, achieving ∼ 1 Debye
(D) in these experiments. This makes them highly attractive as single-photon sources
[66]. Nevertheless, the convoluted experimental setups and required low temperatures
for achieving robust strong coupling heavily restricts the potential of atoms for more
sophisticated and practical photonic devices.

The success of CQED in atomic systems quickly brought the attention of the solid-
state physics community [67]. The interest was first focused on inorganic semiconductors,
where their intrinsic excitations (excitons) played the role of quantum emitters. These
electronic excitations are called Wannier–Mott excitons [68], correlated electron–hole
pairs, in many ways similar to hydrogen atoms, characterized by very large radius and
relatively low binding energies. These states were found to be more stably confined inside
quantum wells, quasi-2D regions enclosed by materials of wider bandgap. Solid-state
cavity exciton-polaritons were first demonstrated for GaAs quantum wells inside Fabry–
Perot microcavities [69], which later led to fascinating achievements such as polariton
amplification devices [70] and Bose–Einstein condensation [71].

Quantum wells can be further confined into zero-dimensional systems with a set of
bound and discrete electronic levels. These “artificial atoms” are known as quantum dots
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[72, 73], and constitute a central theme in nanotechnology. Other types of artificial atoms
have been demonstrated in vacancy defects in crystals known as color centers, being
nitrogen-vacancy centers in diamond the most commonly used [74]. In superconducting
circuits, Cooper pairs can be quantum confined through Josephson junctions [75], playing
the role of artificial atoms that can be brought into the strong coupling regime [34]. Due
to the great dipole moment present in these types of qubits, the so-called field of circuit
QED presents one of the best platforms to achieve the ultra-strong coupling regime [35],
even achieving the best figures of merit in ratio coupling vs frequency [76], and one of
the most promising ones to use for quantum computation [33].
In recent years, a new family of materials has emerged as very promising in the fields

of nanotechnology. These are the van der Waals materials [77, 78], heterostructures
composed of many atomic monolayers bonded by weak van der Waals interactions. In
particular, two-dimensional transition metal dichalcogenides constitute a particularly
promising platform for photonic devices [79]. In these rising materials very robust strong
coupling is possible thanks to their large exciton binding energies, and it has been demon-
strated in many different cavity systems such as DBRs [80], photonic crystals [81], and
plasmonic structures [82, 83].
Currently one of the most interesting quantum emitters in nanophotonics are organic

molecules. Among their numerous advantages they offer high photoluminescence quan-
tum yields, very large dipole moments, and great flexibility in the building of photonic
devices [14]. Since organic molecules are the main interest of this thesis, in the follow-
ing we devote an entire subsection to review the field of strong coupling with organic
molecules.

1.2.3. Strong coupling with organic molecules
Organic molecules are chemical compounds that contain carbon in their composition.
Due to its ability to form chains with other carbon atoms, there is a great variety of
different organic molecules, ranging from simple molecules composed of a few atoms (e.g.
methane CH4), to immensely complex molecules such as DNA.
Organic materials still are one of the most interesting platforms to achieve light–

matter strong coupling, even more than 20 years after its first realization in an optical
microcavity [84]. Such materials present very localized excitations, known as Frenkel
excitons [85], characterized by very large binding energies (∼ 0.1 − 1 eV) and large
transition dipole moments (∼ 1 − 5 D), making them optimal for achieving robust
strong coupling at room temperature. In general these excitations correspond to excited
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electronic states bound to single molecules inside the material, thus potentially allowing
QED devices with single molecules at room temperature, an ideal scenario for studying
quantum optical, nonlinear and saturation effects, such as photon blockade, previously
achieved for atoms at cryogenic temperatures [86].

Another interesting quality of organic molecules is their ability to self-aggregate into
different types of structures thanks to their weak intermolecular forces. Specifically,
molecular aggregates generally present different absorption and emission spectra than
the individual molecules they are composed of, potentially red- or blue-shifting the ex-
citation frequency for J- and H- aggregates respectively [87]. Additionally, aggregation
can further enhance dipole moments, which made J-aggregates the first class of organic
material in which strong emission of polariton states was achieved at room temperature
[88]. Due to the wide variety of molecular aggregates it is possible to create narrow ab-
sorption spectra tuned to the desired optical or near infrared frequency [89]. This feature
is particularly interesting for imitating natural aggregates [90], such as photosynthetic
complexes that present very efficient energy absorption and transfer [91]. Notably, strong
coupling has been achieved with optically active biomolecules such as β-carotene [92],
optical antenna structures in green sulphure bacteria [93], enhanced green fluorescent
proteins [94], and reported even in living photosynthetic organisms [95].

Besides aggregates, the attractive van der Waals interactions between molecules can
also lead to the formation of well-ordered molecular crystals [96]. In particular, an-
thracene crystals have been used to achieve strong coupling in the optical regime [97],
and even room temperature lasing [36]. The latter achievement was done with a single
anthracene crystal, motivated by the belief that strong structural and energetic disorder
was the reason previous attempts at lasing did not succeed. However, later experiments
demonstrated that it could be accomplished in amorphous small molecule and poly-
mer films [98, 99]. These experiments demonstrated that molecular disorder, intrinsic to
many organic material realizations, is not necessarily detrimental for organic polariton
device fabrications, as it was previously thought. From a practical standpoint, it is easier
to manufacture anything in a disordered state than in an ordered one, making organic
materials possibly more advantageous [13].

The versatility of organic molecules has lead to strong coupling experiments in a
wide variety of electromagnetic modes such as planar microcavity photons [84, 100–103],
surface plasmon polaritons [52, 104–106], surface lattice resonances [107–109], localized
surface plasmons [37, 38, 110], and even inside photonic crystals [111]. In the case of local-
ized surface plasmon structures, organic molecules allow to reach strong coupling at the
single-emitter level even at room temperature [38, 58, 112], an impressive achievement
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Figure 1.4: Complexity of organic molecules. (a) Depiction of a rhodamine 6G molecule,
commonly used for achieving organic polaritons. (b) Conceptual example of energy dependence
with nuclear coordinates q1 and q2 of the first two electronic states (S0 and S1) of an organic
molecule. These, in general, multidimensional hypersurfaces are known as potential energy
surfaces. Typical energy landscapes have a dependence on many nuclear degrees of freedom
and present multiple electronic states.

that promotes the technological development of room-temperature quantum devices.
Among other important accomplishments not mentioned above are devices that present
polariton–polariton nonlinear interactions [99], nonlinear optical responses [113, 114],
and even broadband polariton lasing [115] and polariton-based transistors [116], both
at room temperature. Furthermore, strong coupling constitutes a promising solution in
material science. It has been demonstrated that it enables the possibility of tuning the
work function of organic materials [117], enhancing electrical conductance [118, 119], im-
proving propagation lengths of energy transport (typically of a few nanometers [120]) by
several orders of magnitude [121–123], and using organic polaritons to harvest and direct
excitatons by tuning the cavity mode [124]. Organic systems present also an interesting
platform to achieve energy transport between spatially separated molecules [125–128],
thanks to nonlocal interactions induced by the cavity.

One unique aspect of organic materials is their internal complexity, apparent in Fig-
ure 1.4a. Typically, organic molecules encompass tens to hundreds of atoms, forming
rich structures that involve motion of both electrons and nuclei. Such abundance of de-
grees of freedom (DoF) opens new pathways for the electronic excitations to relax (see
an schematic of a typical energy dependence with nuclear coordinates in Figure 1.4b).
For example, the molecule can lose the excitation nonradiatively, i.e., without emitting
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a photon of the exciton frequency, but rather converting the energy into vibrational or
rotational motion of the nuclei, i.e., essentially heat. Together with the high level of
disorder in organic systems, the rates of dissipation and dephasing become more rele-
vant than in their inorganic counterpart. Furthermore, the interaction between electronic
and nuclear DoF (also known as vibronic coupling) becomes crucial to explain central
features of organic molecules such as the Stokes shift, the difference in energy between
absorption and emission spectra.

However, it should be noted that due to the high mass difference between electrons
and nuclei, nuclear motion is usually much slower than electronic motion, leading to
vibrational modes of lower energy5, typically in the mid-infrared spectral region. In
some cases, the absorption intensity of certain nuclear bonds is very high, indicating
large transition dipole moments [129]. For example, the C=O bond-stretching mode
presents a dipole of ∼ 1 D [130] making it suitable for strong coupling. Indeed, this
nuclear bond was exploited to achieve strong coupling with infrared modes, first in a
polyvinyl acetate polymer [131] and in polymethyl methacrylate [132], even achieving in
the latter spatial control over the coupling of vibrations [133]. Additionally, vibrational
strong coupling of different molecules and functional groups in the liquid phase was later
demonstrated [134].

The acknowledgment of this internal structure led to some pioneering experiments in
which the nuclear DoF were exploited. In particular, the structure of some molecules
can be altered, which in turn changed the energy of electronic excitation. This allows
to turn on and off strong coupling by changing the molecular structure externally and
thus detuning the exciton energy from the cavity mode. This was first achieved for
a reaction of a porphyrin dye with nitrogen dioxide, which can be reversed through
heating of the system [135]. Then, by using the molecule spiropyran, which can undergo
reversible change to its isomer merocyanine by externally radiating with UV light [100].
Remarkably, it was shown that in this same setup strong coupling could be used to modify
the photoisomerization reaction time from one species to another [136, 137]. Analogous
experiments with strong coupling in a perovskite salt demonstrated that the energy
barrier of a phase transition could be modified by cavity fields [138]. These experiments
demonstrated that the internal structure does not only play a mayor role in organic
polaritons, but that it can be exploited to modify the chemistry of a system.

5Rotational modes have an even lower energy, and are typically not resolved in spectroscopy measure-
ments, being thus reduced to giving fine structure to the vibrational modes. Therefore, usually these
two modes are jointly referred to rovibrational modes.
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Figure 1.5: Jablonski diagram depicting the possible processes typically present in organic
molecules. Electronic states are denoted by their total spin (S for singlet and T for triplet) and
are schematically represented by their rovibrational structure. Straight arrows represent events
in which single optical photons are transferred, while wavy arrows depict processes in which
energy is transmitted in the form of nuclear motion of the molecule and/or its environment.

1.3. Polaritonic chemistry: state of the art

Although the first realization of strong coupling with organic molecules was more than
20 years ago [84], it is only during the last few years that chemical aspects have begun
to be explored. Indeed, many experimental works have reported chemical modifications
inside cavities [117, 125, 136, 139–142], and much theoretical effort has been devoted to
develop an adequate theory of polaritonic chemistry [143–150]. This young—but rapidly
growing—field might open the doors to the next generation of polaritonic devices, paving
the way towards completely tunable materials whose properties can be controlled for,
e.g., optical sensing or energy harvesting applications, among others.

By placing an organic material in a suitable cavity it is possible to bring the system
into the strong coupling regime. The molecules and the electromagnetic vacuum are
coupled without the need of an external input of energy (as is the case with strong lasers
[151]). Thanks to the large dipole moments of organic molecules, it is possible to achieve
huge Rabi splittings, completely reshaping the energy structure of the system. This opens
the possibility of altering the chemical properties and reactivity of a material, bypassing
energy-consuming alternatives such as synthetic material design or control through a
large external energy input (e.g., strong lasers or large temperatures).
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In strong coupling, the molecules plus the cavity must be thought of a single entity
with its own distinct energy levels. It is thus intuitively obvious that this in principle
should influence processes that normally take place in the molecular excited state (see
in Figure 1.5 a Jablonski diagram illustrating many of the different process present in or-
ganic molecules). Moreover, strong coupling can also have an influence on the electronic
ground state of molecules, in two different ways: by reaching electronic ultra-strong cou-
pling, where molecule–cavity interactions can potentially “dress” the molecular ground
state, and by achieving vibrational strong coupling with ground-state rovibrational states.
We therefore separate the discussion of polaritonic chemistry by modifications of elec-
tronic excited state chemistry, and modifications of the ground state. In the following
we review the experimental and theoretical efforts crucial to the early development of
both of these scenarios.

1.3.1. Manipulating excited-state processes
The first experimental observation of chemical reactivity being modified in a cavity was
done by Hutchison et al. [136] for a photoisomerization reaction. The process was ob-
served in a spiropyran molecule, which undergoes ring opening after UV photoexcitation
to form merocyanine, and the inverse reaction is achieved by thermal means. Spiropyran
absorbs 330 nm light while merocyanine has an absorption maximum at 560 nm, which
is resonant with the Fabry–Perot cavity the molecules are embedded in. Therefore, most
of the product molecules are in the strong coupling regime, achieving a Rabi splitting of
700 meV. The authors observe a slow down of the rate of growth of the merocyanine con-
centration when measured inside the cavity on resonance. The larger the Rabi splitting,
the slower the overall reaction is. By altering the energy landscape of the excited-state
process, they observed a decrease of the reaction rate. While the system was in the ultra-
strong coupling regime (in which the ground state can also be influenced by the cavity),
they did not see any change in the thermally-driven back-reaction from merocyanine to
spiropyran.

This experiment sparked many theoretical studies aiming to understand this phe-
nomenon. At the time, most existing theoretical models were based on oversimplified
descriptions, treating organic molecules as two-level systems. The presence of a more
complex internal structure was generally ignored. However, some models took this into
account by means of an open quantum systems theory (e.g., Lindblad theory [152]),
that is, by assuming that rovibrational modes act like a thermalized bath that induces
decay and dephasing on the molecular excitations. The most sophisticated descriptions

17



1 Introduction

explicitly treated single vibrational modes as harmonic oscillators around the equilibrium
configuration. This model, the so-called Holstein–Tavis–Cummings model [153–155], was
early used by Herrera and Spano to predict an enhancement of intramolecular electron
transfer in collective strong coupling [156]. The authors discuss the mechanism of polaron
decoupling, in which the electronic–nuclear interactions vanish in the thermodynamic
limit. This model is a good approximation when the system is close to the equilibrium,
which is decidedly not the case in an excited-state chemical reaction where the initial
and final nuclear configurations are so different.
Strong coupling is a phenomenon typically studied from the point of view of quan-

tum optics, a field of research that emphasizes the use of simple descriptions to study
highly controllable systems. Organic polaritons were often viewed as a means to modify
light, and little attention was paid to the intrinsic material properties. The first theory
that embraced the complexity of organic systems with the aim to study molecular mod-
ifications in strong coupling was developed in [143], one of the studies that we focus
on chapter 3 of this thesis. In this work we aim for a microscopic description of the
molecules, fully including their nuclear degrees of freedom. Because of the difficulty of
such a task, we treated simple model molecules which could be fully solvable, and an-
alyzed the validity of the Born–Openheimmer approximation, widely-used in chemistry.
A related approach was soon after used by Kowalweski et al., in which they analyzed
the important nonadiabatic dynamics that emerge in the single-excitation subspace in
strong coupling [157, 158]. This method can be interfaced with state-of-the-art quantum
chemistry approaches, achieving great accuracy and low computational cost without
sacrificing the description of all the internal degrees of freedom [159].
An additional theoretical work was made by Flick et al. [147], where they analyzed

matter–photon interactions from the point of view of a quantum-electrodynamical density-
functional theory [160]. They demonstrate the potential of this powerful idea to calculate
chemical quantities such as bond lengths, nonadiabatic couplings, or absorption spec-
tra. The main challenge of this approach is finding suitable functionals that describe
electron–nucleus–photon interactions based on the electron–photon density. It is also of
great importance to this thesis (see chapter 6) the cavity Born–Oppenheimer approxi-
mation [148], one of the possible adiabatic approximations that can be performed in an
electron–nucleus–photon system. More ideas related to the quantum-electrodynamical
density-functional theory were later further explored [161, 162], including additional in-
sight into the intramolecular charge and energy transfer mechanics in strong coupling
[163].
Up to now most of the microscopic descriptions mentioned above treated in somewhat
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detail the electronic and nuclear degrees of freedom such that no more that one or a
few molecules could be considered simultaneously due to the exponential complexity
of such computational task. Nevertheless, despite the potential of organic molecules,
nowadays most strong coupling realizations consist on huge number of emitters. In this
context, we extended the theory developed in [143] so that we can treat macroscopic
number of molecules in terms of the concept of polaritonic potential energy surfaces
[146], a generalization to light–matter system of the ubiquitous potential energy surfaces
of chemistry. This theory is part of the focus of chapter 4 of this thesis. Based on this,
we published a theoretical work [164] in which a large collection of photoisomerizable
molecules were studied. In particular we introduced a model that represented molecules
such as stilbene, azobenzene, or rhodopsin, and studied the single-molecule dynamics
and the energy landscape for collective strong coupling. In this study, presented in detail
in chapter 5, we predict a suppression of the reaction that grows more effective with the
number of molecules. This effect is a generalization to any kind of energy landscape of the
polaron decoupling effect described in [156]. Another collective effect is described in [165]
(see chapter 5), where we discuss the possibilities in polaritonic chemistry of opening new
reaction pathways, previously not possible in standard chemistry, without relying on very
specific conditions, such as in the case of singlet fission processes [166, 167].

The potential of this theory has been demonstrated by treating big molecular systems
using well-known approaches such as QM/MM (quantum mechanics/molecular mechan-
ics) [168, 169]. This accurate technique allows the simulation of realistic experiments
while providing detailed insight at the atomistic level. Such method naturally includes
nonradiative processes that contributes to the loss of excitation of the molecules, and
spontaneous emission of the cavity photon can be straightforwardly added. These pro-
cesses are often very important in strong coupling with organic molecules, and thus are
incorporated in some other descriptions that do not treat explicitly the molecular com-
plexity. For instance, despite it only treating electronic states close to the equilibrium, the
aforementioned Holstein–Tavis–Cummings model has been used to theoretically predict
polariton-assisted singlet fission [170].

Let us address more recent experiments dealing with polaritonic chemistry of the elec-
tronic excited state. One important landmark was achieved recently by Munkhbat et
al., in an experiment demonstrating suppression of photobleaching of organic molecules
[141]. In this process, a molecule can transfer its excitation from the singlet to the long-
lived triplet state (see Figure 1.5). In this state there is a higher probability of reacting
with the atmospheric triplet oxygen (3O2), leading to chemically unstable species that
can damage the photo-active organic molecules [171]. In this experiment it was demon-
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strated that because of the cavity hybridization of the singlet state, this inherited the
short lifetime of the plasmonic modes it was coupled to. This significantly reduced the
population transfer to the triplet state, which is the first step of this detrimental pro-
cess, therefore strongly suppressing the overall photobleaching reaction. Another similar
experiment was achieved for the polymer P3HT in a Fabry–Perot cavity, where a three-
fold reduction of molecular photodegradation is observed [172]. Finally, we note the
possibility of using polaritonic chemistry to manipulate the so-called reverse intersystem
crossing, that is, the transfer from triplet to singlet states, which has been studied in
some experiments and recently discussed [173, 174].

1.3.2. Ground state chemistry in a cavity
Most of the research of polaritonic chemistry up to now has been devoted to influenc-
ing excited-state reactions and structure via electronic strong coupling. Despite the big
relevance of these processes, most common chemical reactions occur in the electronic
ground state and are triggered by thermal fluctuations, i.e., the energy contained in the
internal motion of the participating molecules is used to overcome the transition state
of a reaction. The difference in energy between the reactant state and the transition
state is known as activation energy or energy barrier, and its manipulation is one of
the main challenges in modern chemistry, for example, by applying external mechanical
forces [175] or electric fields [176]. In the context of cavity-modified chemistry, the mod-
ification of the ground-state energy barrier was first analyzed for electronic ultra-strong
coupling. In the original work of Hutchison et al., the ground-state back-reaction from
merocyanine to spiropyran is thermally activated, but the authors did not observe any
modification in strong coupling [136]. Indeed, subsequent theoretical studies confirmed
that even in the ultra-strong coupling regime for electronic transitions, the ground-state
effects are on the order of the single-molecule coupling, i.e., they are not influenced by
collective strong coupling [31, 143].
More recently, a number of experiments reported changes in ground-state chemical

reactivity, not by exploiting the usual electronic strong coupling, but by tailoring cavities
that couple to the desired molecular vibrations [139, 140, 142, 177]. The first observation
in 2016 by Thomas et al. reported up to a ∼ 5-fold decrease of the reaction rate of a
alkynylsilane deprotection process by strongly coupling the Si–C stretching mode to
a infrared cavity [139]. Following experiments achieved strong coupling catalysis, i.e.,
increments in the reaction rate. First, by achieving ultra-strong coupling with the O–H
stretching mode in water, rate increments of 102 and 104 were achieved for two different
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hydrolysis reactions [140]. Then, by inducing strong coupling in a C=O bond, present
both in the reacting molecule and the surrounding solvent, an increase of the reaction
rate of over one order of magnitude has been reported [177].

An experiment of particular relevance is achieved again by Thomas et al. [142]. In
this work the authors aim to recover the idea of “mode-selective chemistry” that was
so prominent in the 1980s. The original idea was to externally excite specific infrared
vibrational modes in order to induce thermally-drive chemical reactions [178]. However,
the abundance of rovibrational states at thermal energies that competed with the selected
mode made the realization of this idea only feasible at cryogenic temperatures, where
relaxation processes were minimized. In this recent experimental study the branching
ratio between two different products is modified when the system is in vibrational strong
coupling. Not only the reaction rate is modified, but the final outcome of the reaction is
changed inside a cavity. It should be emphasized that all of these experiments take place
in the dark; there is no explicit input of energy, other than the intrinsic temperature of
the sample.

At the time of writing of this thesis, current theoretical approaches do not explain these
experiments, and many question remain unanswered. The work in [149] constitutes the
first attempt for a microscopic description of ground-state reactivity in strong coupling.
This theory, which is the focus of chapter 6, explores the chemistry of ground-state
CQED from a fundamental point of view, studying the formally exact quantum reaction
rates and the widely-used transition state theory of chemistry in the context of strong
light–matter interactions. Some predictions of this theory are discussed in detail in [179],
where quantum chemistry methods are used to simulate realistic reactions in a cavity.
In these works we find that the mechanisms that allow to influence the chemistry of the
system are related to Casimir–Polder forces and do not explain the resonant condition
that the experiments discussed above all share. More recently, a study by Angulo et al.
[180] analyzed a particular ground-state charge transfer reaction in vibrational strong
coupling. The reactant and product states are modeled as harmonic oscillators so that it
is possible to generalize the widely-used Marcus theory to chemical species in vibrational
strong coupling. This theory predicts an increase of the charge transfer rate that is most
prominent under resonant conditions. However, this is a very specific model in which
the reaction rate cannot possibly be slowed down, contrary to the original experiment of
2016. Therefore there is still a need to develop a satisfactory theory of molecule–cavity
systems that successfully describes the mechanisms by which chemical reactions can be
altered in the ground-state, so we can predict unusual phenomena and further design
experimental realizations of interest.
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1.4. Summary of contents
This thesis explores from a theoretical point of view the field of polaritonic chemistry
and in general the modification of molecular structure in strong coupling. It is written so
that most concepts are supported with the appropriate theoretical background. In the
following we explain in more detail the structure of this thesis.
In chapter 2 we lay the fundamental theoretical background on which the thesis rests

upon. We start by providing the crucial ingredients to understand the quantization
of the electromagnetic field from Maxwell equations and the Lorentz force, aiming to
achieve a quantum electrodynamical Hamiltonian that includes both light and matter.
Then, we focus on the material part of this Hamiltonian and overview the theoretical
tools used to treat it, such as the Born–Oppenheimer approximation, upon which most
modern chemistry is built. Then, we go back to the light–matter Hamiltonian and focus
on the possible treatments when the electromagnetic component is confined to a cavity.
We overview different theoretical descriptions for cavity QED, such as the ubiquitous
Tavis–Cummings model. Finally, we formally introduce the weak and the strong coupling
regime based on a simple model, showing the key features of this phenomena.
Next, chapter 3 is devoted to analyze from first principles the molecular structure in

electronic strong coupling. In order to do this we exploit the concepts that we learned
from previous cavity quantum electrodynamics models and try to combine them with
the molecular description based on the Born–Oppenheimer approximation. We study the
effects of strong coupling on the nuclear structure of two different molecules, rhodamine
6G and anthracene, which are reproduced through simplified theoretical descriptions. In
particular, we focus on the validity of this approximation, discussing the nonadiabatic
terms introduced by the photonic degree of freedom. We compare the absorption spectra
for these molecules, with and without approximation, for one photonic mode strongly
coupled to one and two molecules. In the case of two molecules, we analyze the nuclear
correlations induced by the cavity in both the polaritonic and dark states. The results
of this chapter have been published in Physical Review X [143].
The chapter 4 is devoted to the theory of polaritonic chemistry. We formally introduce

the molecular description developed previously into a proper CQED theory. We develop
the concept of polaritonic potential energy surfaces, which generalizes the ubiquitous
potential energy surfaces of chemistry to hybrid light–matter systems. We discuss this
theory, analyzing the physical consequences of such description. In particular we consider
the effects of collective strong coupling, which are crucial to understand polaritonic
chemistry. These results were published in ACS Photonics [146].
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In chapter 5 we use the theory of polaritonic chemistry to study novel effects of
strong coupling in photochemistry. In particular we study the suppression of a model
photoisomerization reaction thanks to the hybridization between molecules and photons
in a cavity. We present how this effect is remarkably enhanced in the case of collective
strong coupling, leading to an almost complete suppression of the reaction. Additionally,
we study another model molecule which after photoabsorption can isomerize to a different
configuration with a quantum yield of less than unity. We then demonstrate how by
tuning the cavity parameters, an increase of the reaction efficiency to essentially one
can be achieved. Furthermore, we show how in the case of collective strong coupling
this can lead to a succession of isomerization reactions of many molecules, one after
another, by originally radiating the system with a single photon. With this we establish
the potential of the delocalized nature of polaritons, achieving even the breakdown of
the second law of photochemistry. The results of this chapter have been published in
Nature Communications [164] and in Physical Review Letters [165].

Finally, in chapter 6 we introduce the problem of influencing thermally-driven chemical
reactions in the ground state. We study the formally exact quantum reaction rates
of a model system, in which can apply the cavity Born–Oppenheimer approximation.
We develop a theory that allows to explain and predict non-resonant energetic and
structural changes to molecules coupled to a quasistatic cavity (e.g., metallic structures
that can host plasmonic modes). We then validate our theory by applying it to realistic
cavity and molecular systems. We furthermore study the orientation-dependent collective
enhancement of the effect both for the reaction rates and the nuclear structural changes.
We discuss how our theory can directly connected to well-known van der Waals forces,
and more generally, to Casimir–Polder interactions.
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2 | Theoretical background

This chapter presents the essential theoretical background necessary to explain some of
the most important concepts discussed throughout this thesis. The aim is to provide the
reader with the basic tools to understand the many fundamental equations and approxi-
mations used in the contexts of cavity quantum electrodynamics (CQED) and quantum
chemistry. We start by addressing the question of what is the quantum Hamiltonian
for the light–matter interaction and illustrating what approximations play an important
role in its definition. We then focus on the matter part of the light–matter Hamilto-
nian in order to provide the best possible description of a complex molecule. In this
section we address the Born–Oppenheimer approximation, widely used in molecular and
solid-state physics and in quantum chemistry. Additionally, we present the description of
different characteristic phenomena of organic molecules such as chemical structure and
reactions, and their response to the electromagnetic field. Then, we focus on this last
part, discussing the important features of CQED and the different theoretical descrip-
tions that study them. Finally we present the fundamentals of the two different regimes
of light–matter interaction: weak and strong coupling.

2.1. General light–matter Hamiltonian
This section is devoted to introduce the quantum description of light–matter interaction
by determining the appropriate Hamiltonian operator. In here we focus only on the
essential ingredients to achieve this; a more detailed description can be found in the
literature [21, 181].

2.1.1. Maxwell equations and Coulomb gauge

The first step towards quantization of a system of charged particles with the electromag-
netic field is to define the Lagrangian that properly describes the classical equations of
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electromagnetism, namely, the Maxwell equations and the Lorentz force law:

∇ · E =
ρ

ε0
, (2.1a)

∇× E = −∂B

∂t
, (2.1b)

∇ ·B = 0, (2.1c)

∇×B = µ0J + µ0ε0
∂E

∂t
, (2.1d)

mi
∂2ri
∂t2

= qi

[
E(ri) +

∂ri
∂t
×B(ri)

]
. (2.2)

For a collection of charged particles, ρ =
∑

i qiδ(r − ri) is the charge density and J =∑
i qi∂triδ(r− ri) is the current density. The constants ε0 and µ0 are the vacuum electric

permittivity and the magnetic permeability respectively. E and B are the electric and
magnetic fields, in which we omit the spatial and temporal dependence (E ≡ E(r, t)) for
notational convenience. It is useful to express the electric and magnetic fields in terms
of some new variables, the vector potential A and the scalar potential φ:

E = −∂A

∂t
−∇φ, (2.3a)

B = ∇×A. (2.3b)

With these definitions, equations Eq. (2.1b) and Eq. (2.1c) are automatically satisfied,
while the remaining two Maxwell equations can now be written as:

∇(∇ ·A)−∇2A +
1

c2

∂2A

∂t2
+

1

c2
∇∂φ

∂t
= µ0J, (2.4a)

∇2φ+ ∇ · ∂A

∂t
= − ρ

ε0
, (2.4b)

where c = (ε0µ0)−1/2 is the vacuum speed of light. Therefore, the two equations in
Eq. (2.4) with the definitions of Eq. (2.3), together with the Lorentz force law in Eq. (2.2),
fully describe classical electromagnetic interactions.
The definition of the vector and scalar potentials given by Eq. (2.3) is not unique, i.e.

these equations remain invariant under the gauge transformations A → A + ∇χ and
φ→ φ− ∂tχ, where χ(r, t) is any arbitrary function of space and time. This property of
the equations of electromagnetism gives us a freedom of choice of the potentials A and
φ without altering the underlying physics. Astute gauge fixing can greatly simplify the
equations of a particular problem. For our purpose we specify the following condition
for the vector potential:

∇ ·A = 0. (2.5)
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This condition is known as the Coulomb gauge and allows to simplify the equations to
the following set:

∇2A− 1

c2

∂2A

∂t2
= −µ0J−

1

c2
∇∂φ

∂t
, (2.6a)

∇2φ = − ρ
ε0
. (2.6b)

Under this choice, the scalar potential φ satisfies the Poisson’s equation of electrostatics
Eq. (2.6b), and thus it corresponds to the instantaneous electrostatic Coulomb potential
φ(ri) =

∑
j 6=i qj/(4πε0|rj − ri|).

Furthermore, according to Helmholtz’s theorem, we can separate the electric field (E =

E⊥ + E‖) into transverse (E⊥) and longitudinal (E‖) components, with zero divergence
and zero curl respectively. The Coulomb gauge gives direct physical meaning to each
component, since by definition, the vector potential is purely transverse, i.e., A = A⊥,
and thus the components of the electric field are given by E⊥ = −∂tA and E‖ = −∇φ.
We can thus separate Maxwell’s equations into transverse and longitudinal sets, where
the first describe radiation and retarded interactions via electromagnetic waves, and
the second describe instantaneous Coulomb interactions between charges. We can use
these considerations to simplify further Eq. (2.6a) and get one single equation for the
transversal fields:

∇2A− 1

c2

∂2A

∂t2
= −µ0J⊥, (2.7)

where Helmholtz’s theorem has also been applied to the current density J = J⊥ + J‖.

2.1.2. Minimal coupling Hamiltonian
Under the Coulomb gauge we have a clear interpretation of the different sets of Maxwell
equations and we have defined the scalar potential φ. The expressions in Eq. (2.2) and
Eq. (2.7) are enough to describe the light–matter system. Note that these equations
depend only on two independent variables, namely A and ri. We can thus introduce the
following form of Lagrangian:

L =
∑
i

[
1

2
miṙ

2
i + qiṙi ·A(ri)− qiφ(ri)

]
+
ε0
2

∫
V

dV
[
E2
⊥ + c2B2

]
. (2.8)

Note that the fields E and B, and the potential φ, are all functionals of r and A and
thus this Lagrangian depends on two independent generalized coordinates and their
time derivatives, {ri, ṙi} and {Ai, Ȧi}. It can be shown that this Lagrangian recovers
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the original equations of the light–matter system, Eq. (2.1) and Eq. (2.2), by using the
Euler–Lagrange equation.
Now that we defined the Lagrangian and the relevant variables ri, A for our system,

we construct can the classical light–matter Hamiltonian, defined as H =
∑

i Q̇iPi − L,
where the Qi are the generalized canonical coordinates (i.e., our relevant variables) and
Pi = ∂L/∂Q̇i are their corresponding canonical momenta. In this case:

pi =
∂L
∂ṙi

= miṙi + qiA(ri), (2.9a)

Π =
∂L
∂Ȧ

= ε0Ȧ, (2.9b)

where we can actually identify Π as minus the transversal displacement field D⊥ = −Π,
due to our choice of gauge where E⊥ = −Ȧ. The Hamiltonian of the system thus reads

H =
∑
i

[p− qiA(ri)]
2

2mi

+
∑
i>j

qiqj
4πε0|ri − rj|

+
ε0
2

∫
V

dV
[
E2
⊥ + c2B2

]
, (2.10)

where the first term accounts for the kinetic energy of the charges and the light–matter
coupling, the second term corresponds to the usual Coulomb instantaneous interaction,
and the third term is the electromagnetic energy of the system. This Hamiltonian is
known as the minimal coupling Hamiltonian. Note that despite it being expressed explic-
itly in terms of the electric and magnetic fields, these are functionals of the canonical
coordinates and momenta.
Before proceeding to quantize the Hamiltonian, note that, in general, we can write

the vector potential as an expansion in reciprocal space given by

A(r, t) =
1

(2π)3/2

∫
d3k

∑
λ=1,2

[
Aλ(k, t)eλe

ik·r + c.c.
]

(2.11)

where eλ are unitary orthogonal vectors representing the two only possible directions
of the purely transversal field. The functions Aλ(k, t) are determined by replacing this
expansion into Eq. (2.7).1 We can also express the canonical momenta in reciprocal space,
which allow us to rewrite the electromagnetic energy of the system as:

HEM =
ε0
2

∫
d3k

∑
λ=1,2

[
Π2
λ(k, t)

ε20
+ c2k2A2

k(k, t)

]
. (2.12)

1This expression is valid both in the presence and absence of sources. It is worth mentioning that in
the case of the free field it is possible to write each term as Ak,λ(r, t) = Ak,λ(r)e−iω(k)t, where the
Ak,λ(r) satisfy the homogeneous Helmholtz equation (∇2 + k2)Ak,λ(r) = 0. In this case the explicit
time dependence of HEM disappears, as the energy is conserved.
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Note that the explicit dependence with time of Eq. (2.12) means that the energy of the
electromagnetic field alone is not conserved, but rather the energy of the full coupled
system.

Now, we are ready to quantize the Hamiltonian in Eq. (2.10) by transforming the
coordinates and momenta into operators. The standard procedure to find the quantum
description from a classical theory is known as canonical quantization. This method was
first introduced in 1926 by Paul Dirac in his PhD thesis [4, 182] and consists on imposing
quantum commutation relations to the canonical Poisson brackets, i.e.,

{riα, pjβ} = δijδαβ → [r̂iα, p̂jβ] = i~δijδαβ, (2.13a)

{Aλ(k, t),Πλ′(k
′, t)} = δλλ′δ(k− k′)→

[
Âλ(k, t), Π̂λ′(k

′, t)
]

= i~δλλ′δ(k− k′). (2.13b)

By replacing these new variables in the form of operators in Eq. (2.10) and Eq. (2.12) we
thus find the quantum Hamiltonian of the light–matter system in the Coulomb gauge.
Inspection of Eq. (2.12) and Eq. (2.13b) reveals a clear resemblance with the quantum
harmonic oscillator. This motivates us to introduce the ladder operators

âk,λ(t) =

√
ε0

2~ω(k)

[
ω(k)Âλ(k, t) +

i

ε0
Π̂λ(k, t)

]
, (2.14)

which satisfy the bosonic commutation relations, i.e., [âk,λ, âk′,λ′ ] = 0, [â†k,λ, â
†
k′,λ′ ] = 0,

and [âk,λ, â
†
k′,λ′ ] = δλλ′δ(k − k′). With this definition we can now obtain the vector

potential operator and its canonical momentum in reciprocal space as functions of the
ladder operators:

Âλ(k, t) =

√
~

2ε0ω(k)

(
âk,λ(t) + â†k,λ(t)

)
, (2.15a)

Π̂λ(k, t) = −i
√

~ω(k)ε0
2

(
âk,λ(t)− â†k,λ(t)

)
, (2.15b)

and using Eq. (2.11) and the relations between vector potential and electric and magnetic
fields we can obtain the expressions for the field quantum operators in real space:

Â(r, t) =
1

(2π)3/2

∫
d3k

∑
λ=1,2

√
~

2ε0ω(k)
(âk,λ(t)ek,λ(r) + H.c.) , (2.16a)

Ê⊥(r, t) = − i

(2π)3/2

∫
d3k

∑
λ=1,2

√
~ω(k)

2ε0
(âk,λ(t)ek,λ(r)− H.c.) , (2.16b)

B̂(r, t) =
1

(2π)3/2

∫
d3k

∑
λ=1,2

√
~

2ε0ω(k)
(âk,λ(t) [∇× ek,λ(r)] + H.c.) , (2.16c)
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where we now have introduced a general spatial dependence on the unitary vectors ek,λ.
We can finally write the full quantum minimal coupling Hamiltonian using the ladder
operators, with now the electromagnetic energy described as a sum of quantum harmonic
oscillators2:

Ĥ =
∑
i

1

2mi

[
p̂i − qiÂ(ri)

]2

+
∑
i>j

qiqj
4πε0|r̂i − r̂j|

+
∑
k,λ

~ω(k)

(
â†kλâkλ +

1

2

)
. (2.17)

2.1.3. Dipolar Hamiltonian

In the previous section we defined the appropriate quantum operators to describe the
quantum fields and the electromagnetic Hamiltonian in terms of the standard creation
and annihilation operators. However, we did not explicitly express in those terms the
light–matter interaction Hamiltonian, defined as Ĥ =

∑
i

1
2mi

[
−2qip̂i · Â(ri) + q2

i Â
2(ri)

]
in the Coulomb gauge. The choice of gauge can impact the physical meaning of many
magnitudes, the system modeling, and the numerical accuracy of the description. For
instance, in systems where great spatial precision is not required, e.g. in dynamical in-
teractions with a laser, Eq. (2.17) is the most suitable description [21, 183]. However, in
most common scenarios in quantum optics the dipole moments of the emitters and the
electric field are the most convenient operators. We devote this section to transform the
minimal coupling Hamiltonian to describe the light–matter interaction in terms of the
electric field.

The following treatment is founded on the original theoretical work of Maria Goeppert-
Mayer in 1931 [184], used in the early quantum radiation theory. This method was
then generalized by Power and Zienau in 1959 by completing the description when light
and matter where treated as a closed dynamical system [185]. Finally, in 1971 Woolley
developed a more fundamental view of the transformation [186]. This consists in the
unitary transformation of the type Û = e−iŜ with the generator operator

Ŝ =
1

~

∫
V

d3rP̂(r) · Â(r) (2.18)

where P̂(r) is the polarization field operator of the matter, which may be written in

2We see that in the vacuum state of the system the energy is E0 = 1
2

∑
k,λ ~ω(k). The frequencies

ω(k) have no upper bound, so E0 diverges. However, this is not a problem since expectation values
only depend on energy differences and not absolute energies, so the divergence of the vacuum state
does not appear in any physical observable.
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terms of the electric multipole moments3 [187]:

P̂(r) =
∑
i

µ̂iδ(r− ri)− Q̂i∇δ(r− ri) + . . . , (2.19)

where µ̂i =
∑

j qj(r̂i − r̂j) and Q̂i = −1/2
∑

j qj(r̂i − r̂j)(r̂i − r̂j) are respectively the
dipole and quadrupole moments of a set of charges qj with center of mass at ri, typically
corresponding to atoms or molecules. The transformation Ĥnew = ÛĤÛ † changes the
Hamiltonian, without modifying the underlying physics, into the so-called multipolar
Hamiltonian. This is commonly known as the Power–Zienau–Woolley transformation
[21, 181]. In the following we present how each term of the Hamiltonian is transformed,
for a more detailed explanation see [188]:

Û

∑
i

(
p̂i − qiÂ(ri)

)2

2mi

 Û † =
∑
i

p̂2
i

2mi

−
∫
d3rM̂(r) · B̂(r)

+
1

2

∫
d3r′

∫
d3rB̂(r)Ô(r, r′)B̂(r′),

(2.20a)

ÛĤEMÛ
† = ĤEM −

1

ε0

∫
d3rP̂⊥(r) · D̂⊥(r) +

1

2ε0

∫
d3rP̂2

⊥(r),

(2.20b)

Û V̂CoulombÛ
† = V̂Coulomb, (2.20c)

where M̂(r) and Ô(r, r′) are the magnetization and dimagnetization fields respectively.
The corresponding magnetic and diamagnetic terms are in general not important, as their
order of magnitude is always smaller than the electric dipole component and usually
only become relevant in high external static magnetic fields. For the purpose of this
thesis, we now perform the dipole approximation4, which consists in just considering the
dipolar term in Eq. (2.19) and neglecting all higher multipoles. Since the magnetic dipole
interaction is of the same order as the electric quadrupole one [181], this approximation

3The more fundamental definition for the polarization field is P̂(r) =
∑
i,j q

(j)
i (ri −

rj)
∫ 1

0
dsδ3 [r− rj − s(ri − rj)]. This is more cumbersome and less intuitive, so we instead present

P̂(r) directly as a multipole expansion. The connection between each expression can be found in
[181].

4This approximation is completely equivalent to the long-wavelength approximation, in which the
charges conforming each dipole are very close compared to the EM wavelength and thus experience
the same fields, i.e. for µ = qiri + qjrj the fields satisfy A(ri) ≈ A(rj). This is analogous to neglect
the effects of higher electric multipoles, as they are more significant as the spatial structure of the
collection of charges becomes important.
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directly eliminates all magnetic interactions, leading to the dipolar Hamiltonian:

Ĥ =
∑
i

p̂2
i

2mi

+
∑
i>j

qiqj
4πε0|r̂i − r̂j|

− 1

ε0

∑
α

µ̂α ·D̂⊥(r)+
1

2ε0

∫
d3rP̂2

⊥(r)+
∑
k,λ

~ω(k)â†kλâkλ,

(2.21)
where now P̂(r) ≈

∑
α µ̂αδ(r− rα) in the dipole approximation. Note that the indices i,

j represent individual charges, while the index α indicates a single dipole of a collection
of charges. This distinction is particularly relevant in this thesis, where we will treat
collections of molecules that present an electric dipole moment that depends on the
internal degrees of freedom of the molecule.
The Hamiltonian of Eq. (2.21) represents the starting point of most theoretical de-

scriptions in this thesis. However, in most practical cases direct use of this Hamiltonian
is very cumbersome and some simplifications are needed. In the next section we focus on
the material part of the Hamiltonian in order to achieve a more convenient description
for our purposes. Later, in section 2.3, we will focus our attention on a different form of
the light–matter Hamiltonian that is more appropriate for CQED.

2.2. Molecular Hamiltonian
In this section we will focus on the material part of Eq. (2.21):

Ĥmat =
∑
i

p̂2
i

2mi

+
∑
i>j

qiqj
4πε0|r̂i − r̂j|

. (2.22)

As discussed above, the nature of this Coulomb interaction between charges is instanta-
neous, and deals exclusively with the longitudinal part of the electric field, E‖(r). While
Eq. (2.22) is completely general, in this thesis we do not deal with interacting unbound
charges, but rather with interacting bound systems of particles. For the purposes of this
thesis, this will represent interacting molecules, but it also may describe atoms, quantum
dots, nanoparticles, etc.
Let us first rewrite the Hamiltonian for this many-body problem in the following way:

Ĥmat =
∑
i

Ĥ
(i)
mol +

∑
i>j

Ĥ
(ij)
int , (2.23)

where Ĥ(i)
mol describes the Hamiltonian of a single molecule, and Ĥ(ij)

int the interaction term
between the i-th and j-th molecules5. In this section we discuss these two Hamiltonians
for the case of neutral organic molecules.

5Note that, depending on the context, we use the indices i and j to represent either individual charged
particles or molecules.
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2.2.1. Born–Oppenheimer approximation
Let us focus first on the description of a single molecule, for which the Hamiltonian
in Eq. (2.22) is still valid. We can rewrite it in a more convenient way, by separating
explicitly the Ne electrons and the Nn nuclei conforming the molecule:

Ĥmol =
Ne∑
i=1

p̂2
i

2me

+
Nn∑
j=1

P̂2
j

2Mj

+ V̂ee(r̂i) + V̂nn(R̂i) + V̂en(r̂i, R̂j), (2.24)

where the interaction potentials are:

V̂ee(r̂i) =
e2

4πε0

Ne∑
i=1

Ne∑
j>i

1

|r̂i − r̂j|
, (2.25a)

V̂nn(R̂i) =
e2

4πε0

Nn∑
i=1

Nn∑
j>i

ZiZj

|R̂i − R̂j|
, (2.25b)

V̂en(r̂i, R̂j) = − e2

4πε0

Ne∑
i=1

Nn∑
j=1

Zj

|r̂i − R̂j|
, (2.25c)

where the r̂i and R̂j with an explicit subindex outside a sum represent the dependence
with the coordinates of all charges. Note that each nucleus can have different masses Mi

and charges Zi, being this completely general for any molecule.

Adiabatic representation

Typically, directly computing the energies and wavefunctions associated with the Hamil-
tonian in Eq. (2.24) without approximations is a virtually impossible task for typical
organic molecules. For example, the anthracene molecule has 24 nuclei and 94 electrons,
each of them having 3 spatial degrees of freedom, making a total of 354 different vari-
ables in the time independent Schrödinger equation. In the following we will discuss the
Born–Oppenheimer approximation (BOA), which allows to describe the molecule in a
less complicated manner. This approximation was first proposed in 1927 by Max Born
and J. Robert Oppenheimer [189, 190] and it is still commonly used in quantum chem-
istry today. In order to present it, let us first gather terms in Eq. (2.24) and rewrite it
as

Ĥmol =
Nn∑
j=1

P̂2
j

2Mj

+ Ĥe(r̂i; Rj), (2.26)

where the electronic Hamiltonian Ĥe contains by definition all electronic contributions
and all the nuclear interactions. Since we have separated the nuclear kinetic energy
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T̂n =
∑Nn

j=1

P̂2
j

2Mj
, the electronic Hamiltonian only depends parametrically on the nuclear

degrees of freedom. Diagonalization of Ĥe yields a set of electronic eigenstates {Φk(Rj)}
that inherit this parametric dependence and that satisfy

Ĥe(r̂i; Rj)Φk(ri; Rj) = Vk(Rj)Φk(ri; Rj), (2.27)

where the Vk(Rj) are the so-called electronic potential energy surfaces (PESs). The
adiabatic wavefunctions {Φk(Rj)} constitute a complete and orthonormal set. It can
therefore be used as a basis set in which to expand the total wavefunction of the system

Ψ(ri,Rj) =
∑
k

χk(Rj)Φk(ri; Rj), (2.28)

where the nuclear wavefunctions χk(Rj) act as expansion coefficients. This is known as
the Born–Huang expansion [191] and it is formally exact when an infinite number of
electronic states are included. Inserting this into the full Schrödinger equation of the
system ĤmolΨ(ri,Rj) = EΨ(ri,Rj) leads to the set of coupled differential equations[

T̂n + Vk(Rj)
]
χk(Rj) +

∑
k′

Λ̂kk′(Rj)χk′(Rj) = Eχk(Rj), (2.29)

where the operator Λ̂kk′(Rj) = 〈Φk(ri; Rj)|T̂n|Φk′(ri; Rj)〉ri − T̂nδkk′ accounts for nona-
diabatic couplings between the different PESs, describing the dynamical interaction be-
tween electronic and nuclear motion. The subindex ri represents integration over all the
electronic degrees of freedom.
The Born–Oppenheimer approximation consists now in describing the full wavefunc-

tion of the system by the ansatz

Ψ(ri,Rj) = χk(Rj)Φk(ri; Rj), (2.30)

i.e., any molecular state is represented by a single product of an adiabatic electronic
state and a nuclear wavefunction. By replacing this in the Schrödinger equation we get
a similar expression to Eq. (2.29) that results in[

T̂n + Vk(Rj)− Λ̂kk(Rj)
]
χk(Rj) = Eχk(Rj), (2.31)

where Λ̂(Rj) is now a purely diagonal operator. Although the approximation effectively
decouples the nuclear and electronic degrees of freedom, calculating Λ̂(Rj) is not gener-
ally an easy task. For the sake of clarity let us now consider that all the nuclei have the
same mass M = Mj. Then we can rewrite the expression for Λ̂kk′(Rj) as

Λ̂kk′(Rj) =
1

2M

(
2F̂kk′(Rj) ·∇ + Ĝkk′(Rj)

)
, (2.32)
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where F̂kk′(Rj) = 〈Φk(Rj)|∇Φk′(Rj)〉 and Ĝkk′(Rj) = 〈Φk(Rj)|∇2Φk′(Rj)〉 are the
derivative coupling vector and the scalar coupling respectively. We can now argue doing
an additional adiabatic approximation by neglecting the term Λkk(Rj) in Eq. (2.31). The
separability of nuclear and electronic wavefunctions in BOA rests on the large mass dif-
ference between nuclei and electrons. This is reflected in Eq. (2.32), where it is clear that
a large nuclear mass leads to small nonadiabatic couplings. Therefore, this nonadiabatic
term is typically ignored in most calculations, as it is often too complicated to calculate
in organic molecules and represents a negligible correction to the electronic PESs. Note
that this approximation is often known as the adiabatic approximation. However, the
ansatz of Eq. (2.30) is also often called Born–Huang approximation while neglecting the
diagonal nonadiabatic term is the BOA [192]. Every reference to the BOA throughout
this thesis will be referring to the latter denotation.
Effectively, the BOA considers that the electrons instantaneously adapt to the nuclear

motion so that the energy updates instantly when changing the configuration of the
nuclei. This however only applies for an isolated single electronic state and can break
down when two states come close. This is expressed in the dependence of the nonadiabatic
coupling with F̂kk′(Rj), which by using the Hellmann–Feynman theorem can be rewritten
as

F̂kk′(Rj) =
〈Φk(Rj)|∇Ĥe|Φk′(Rj)〉
Vk′(Rj)− Vk(Rj)

. (2.33)

It becomes immediately apparent that the nonadiabatic coupling will increase when the
electronic PESs come close to each other, and even diverge if the energies are equal.
These points of degeneracy are known as conical intersections, and they have a central
role in nonadiabatic transitions [193].

Diabatic representation

While the adiabatic representation is useful for most calculations in organic molecules, it
is still difficult to solve when the nonadiabatic coupling vector F̂kk′(Rj) is relevant. This
nonlocal operator, that describes coupling between electronic states through nuclear mo-
tion, is not an intuitive quantity to work with, and can even present a singular behavior
in the vicinity of intersection between PESs. For these situations a diabatic basis is more
favorable. This is achieved through a unitary transformation D̂ of the electronic basis
set Φ̃(Rj) = D̂(Rj)Φ(Rj). In general it can be shown [192] that the equations Eq. (2.29)
now read [

− 1

2M

(
∇ + F̃(Rj)

)
+ Ṽ (Rj)

]
χ(Rj) = Eχ(Rj). (2.34)
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The diagonal PES matrix has transformed through Ṽ (Rj) = D̂†(Rj)V̂ (Rj)D̂(Rj) and
the transformed nonadiabatic derivative coupling is

F̃(Rj) = D̂†(Rj)F̂(Rj)D̂(Rj) + D̂†(Rj)
(
∇D̂(Rj)

)
. (2.35)

Note that this is general for any kind of unitary transformation to an arbitrary basis.
We can now fix the necessary conditions to transform to the diabatic basis, i.e., one in
which the nonadiabatic couplings in Eq. (2.34) are eliminated. This can be achieved if
the transformation matrix D̂ satisfies the following condition

F̂(Rj)D̂(Rj) +
(
∇D̂(Rj)

)
= 0. (2.36)

We can see that for such a transformation F̃(Rj) = 0 and the Schrödinger equation in
the diabatic basis will thus read[

− 1

2M
∇ + Ṽ (Rj)

]
χ(Rj) = Eχ(Rj). (2.37)

In this basis the diabatic PESs significantly change with respect to the adiabatic pic-
ture, and are coupled through the offdiagonal terms Ṽkk′(Rj), which are much easier to
compute.

One relevant question is whether a pure diabatic basis exists, i.e., does Eq. (2.36) have
in general a solution. The answer is that strictly diabatic states are only possible in a
one-dimensional problem such as a diatomic molecule [194]. The efforts to find the exact
diabatic transformation have thus turned to finding the matrix D̂ such that F̃(Rj) is not
exactly zero, but negligible. The basis set is thus formed by the so-called quasi-diabatic
states, essential for many numerical simulations.

2.2.2. Intermolecular forces
We now focus on the second part of Eq. (2.23) and calculate the interaction energy
for two different charged systems A and B as schematized in Fig. 2.1. For this it is
particularly useful to describe the systems as two separated charge distributions ρA(r)

and ρB(r) defined as ρα(r) =
∑Nα

i qiδ(r − ri). The interaction energy reads

VAB =
1

4πε0

∫
d3r

∫
d3r′

ρA(r)ρB(r′)

|r− r′|
. (2.38)

If the separation between the center of masses of each distribution, |R̂| = |r̂A − r̂B| is
much larger than the sizes of each distribution, we may expand VAB in a multipole series
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Figure 2.1: Scheme of two interacting charge distributions in space.

with respect to rA and rB, resulting in:

V̂AB(R) =
1

4πε0

[
qAqB

|R|
+
qAµ̂B · eR

|R|2
− qBµ̂A · eR

|R|2

+
µ̂A · µ̂B − 3(µ̂A · eR)(µ̂B · eR)

|R|3
+ . . .

]
, (2.39)

where eR = R/|R| is the unitary vector connecting the two systems, qα is the total
charge of each distribution, and µ̂α =

∫
d3rρα(r̂)(r̂ − r̂α) is the total dipole of each

system.
In the following we only consider neutral molecules as our charge distributions and we

ignore higher order multipoles in the expansion, as their contribution to the interaction is
negligible. Therefore, now the total interaction Hamiltonian between molecules is purely
dipolar:

Ĥdd =
1

4πε0

∑
i>j

µ̂i · µ̂j − 3(µ̂i · eRij
)(µ̂j · eRij

)

|Rij|3
. (2.40)

This interaction gives rise to the well-known van der Waals forces and to Förster res-
onance energy transfer (FRET) between molecules [195–197]. Finally, it is important
to emphasize that this term only accounts for the instantaneous Coulomb interaction,
and that it is mediated by the longitudinal electric near field. For much larger distances
between molecules, a retarded interaction comes into play6, and its description requires
the full light–matter Hamiltonian.

6This effect emerges because the speed of light is finite. When the information of a particular charge
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2.2.3. Chemical processes
In here we discuss the relevance of the Born–Oppenheimer approximation in organic
molecules and the wide range of chemical processes these compounds present. The po-
tential energy surfaces of an organic molecule, or a particular reaction, contain essen-
tial chemical information of the system. However, finding the full energy landscape of
molecules and reactions is an arduous task due to the great number of DoF involved,
resulting in intricate multi-dimensional hypersurfaces. Furthermore, most of the nuclear
configurations of a molecule do not play a significant role in any molecular process, so
often calculating the full PES landscape is a superfluous effort. Usually the best strategy
is to estimate beforehand which are the relevant configurations of the molecule. In the
following we discuss the relevance of some points of the PES in chemical processes, as
well as introduce some tools that can be used to obtain chemical information of the
system.
The most relevant points are usually the stationary points of the surfaces. These are

characterized by the condition ∇V (R) = 0, and can represent local minima or saddle
points of the PES V (R). The minima describe the equilibrium configurations of the
molecule. Around these points usually a harmonic approximation of the surface is per-
formed, as depicted in Fig. 2.2a. Here, the ground state PES (blue line) is described by a
Morse potential, Vg(R) = De(1− eA(R−R0))2, however close to the equilibrium configura-
tion at R0 it can be approximated by the corresponding quadratic potential (dashed dark
blue line). In this same plot we represent an excited state (orange line) without a def-
inite minimum. In this conceptual scenario, after photoabsorption, the molecule would
be promoted to this excited state at R0, thus experiencing a force −∂RVe(R)|R0 towards
a larger R. This is a typical situation in the event of bond dissociation, where R may
represent the bond distance between two nuclei, which can dissociate after absorption
of a photon.
Another example for a stationary configuration is the saddle point. This often repre-

sents the transition state configuration in a chemical reaction. Consider for instance the
scenario depicted in the ground-state PES of Fig. 2.2b, where two equivalent equilibrium
configurations RA and RB are separated by a local maximum7. This may describe the

configuration reaches an emitter situated far away, these charges have already rearranged, so that
the emitter response is no longer in phase. This arises for distances much larger than the wavelength
corresponding to the characteristic absorption frequency of the emitters [198]. In the systems that
we are concerned with in this thesis, these wavelengths are of the order of hundreds of nanometers,
so we can completely disregard retardation effects when dealing with dipole–dipole interactions.

7Note that while in one dimension the transition state is a local maximum, in general multi-dimensional
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1

2

Figure 2.2: Some common conceptual energy landscapes in chemistry. (a) Bond dissociation
picture. (b) Isomerization scenario between two stable configurations RA and RB. (c) Two-
dimensional ground state surface with two stable configurations connected by a minimum energy
path (light gray line).

reaction between two isomers of the same molecule, i.e., two different nuclear configu-
rations for the same chemical composition. In the energy landscape of Fig. 2.2b it is
also possible to photoexcite the molecule to trigger a photoisomerization reaction. After
absorption, the molecule is in the excited state at RA, from where it will evolve towards
the transition state, where often the nonadiabatic coupling becomes important, inducing
a nonradiative transition to the ground-state PES. These events often happen close to or
through conical intersections, as presented in section 2.2. In nonradiative transitions the
molecule evolves roughly following the diabatic surfaces, represented as dashed lines in
Fig. 2.2b. In chapter 5 we study an example of a photochemical reaction where diabatic
surfaces become certainly useful to study dynamics after photoexcitation.

In the two previous examples we restrict the picture to one-dimensional PESs, but as
already mentioned, often this is not the case in real molecules. The PES is here used as a
conceptual tool that aids to illustrate the analysis of molecular phenomena. Nevertheless,
we can often reduce the dimensionality of the system PES by finding the appropriate
combination of coordinates that describe a particular process, thus generating an effective
PES. See for example the case in Fig. 2.2c, where a two-dimensional ground-state PES
displays two different minima. We can find the minimum energy path (MEP) between
the two (see its projection in light gray). This combination of R1, R2 is called the reaction
coordinate or reaction path. A PES like the ground state in Fig. 2.2b may be the effective
PES of a two-dimensional scenario, now being R the corresponding reaction coordinate.

scenarios this is a saddle point.
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Much effort is devoted to develop methods to compute the MEP that can effectively
describe a reaction in a multi-dimensional PES [199]. These methods typically require
knowledge of the initial and final configurations of a process, which can be found with
minimization routines such as steepest descent by introducing an initial estimation as
input. This simplification of the PES often can be used to directly calculate the system
dynamics [200]. However, it should be noted than in many complex systems, simulating
the actual quantum dynamics of the system can become a rather crude approximation.
If the nuclei move very slowly on the PES they behave approximately classically, and
then the MEP can be used to compute classical dynamics of the reaction. Many meth-
ods use simplified PES to simulate classical dynamics in particular processes (e.g., the
widely-used surface hopping method [201, 202]). However, often finding the MEP gives
information of intermediate states such as transition states, or metastable configurations.
For the sake of illustration, consider that the two-dimensional PES in Fig. 2.2c represents
the ground-state surface of a molecule. It is possible to obtain the information about
the two minima configurations via minimization routines and then compute the mini-
mum energy path that connects them. With this approach, the transition state between
the two is apparent, which allows to compute the energy barrier that separates the two
equilibrium configurations.
Energy barriers are central in thermally-driven ground-state chemistry, as it is one

of the magnitudes that govern the reaction rate from one chemical species to another.
In transition state theory (TST) the variance of the rate k of a chemical reaction with
temperature depends on the energy barrier Eb as described by the Eyring equation (often
known as Eyring–Polanyi equation) [203]

k = κ
kBT

h
e
− Eb
kBT , (2.41)

where κ is the transmission coefficient, typically considered equal to one if nonadiabatic
effects are negligible close to the energy barrier. This equation resembles the well-known
empirical Arrhenius equation [204]. However, it should be noted that the Eyring equa-
tion is derived from statistical mechanical arguments. One of the basic ideas in the
development of TST and the Eyring equation is that reaction rates can be studied by
examining the process close to the transition and equilibrium states. This arises from
assuming quasi-equilibrium between reactants and products, where both states reach a
Boltzmann thermal distribution of energies. This fails in short-lived states where the
time to achieve thermal equilibrium is greater than the lifetime of the state. In these
situations TST only gives a rough estimate of the reaction rate.
It should be noted that the Eyring equation arises from classical considerations, and a
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rigorous quantum rate theory is required when purely quantum effects become relevant,
such as nonadiabatic couplings, zero-point energy, and tunneling [205]. In the following
we will briefly review an approach based on the correlation function formalism [206–208]
that is used in chapter 6. This states that the rate of a molecular reaction is given by

k(T ) =
1

Qr(T )

∫ tf→∞

0

Cff (t)dt, (2.42)

where Qr(T ) = tr[exp (−βĤ)], with β−1 = kBT , is the time-dependent partition function
of the reactants at temperature T and Cff (t) is the flux-flux autocorrelation function,
defined as

Cff (t) = tr[F̄ Û †(tc)F̄ Û(tc)]. (2.43)

This correlation function is computed as the trace of a product of operators, where
U(tc) = exp(−iĤtc), with tc = t − iβ/2, is the complex time evolution operator and F̄
represents the symmetrized flux operator

F̄ =
1

2M

(
P̂ · ∂s(R)

∂R
δ(s) + δ(s)P̂ · ∂s(R)

∂R

)
. (2.44)

Here, P̂ is the nuclear momentum operator and the surface dividing the reactant and
product states is defined by the zeros of the function s = s(R), e.g., the function s(R) =

R corresponds to a dividing surface at R = 0. The flux-flux autocorrelation function
describes the temporal flux of positive-momenta probability through the dividing surface
of a thermally averaged initial state (which is accounted for by the thermal part of the
Û(tc) operator). Negative values of Cff (t) indicate recrossing of the dividing surface in
the opposite direction, thus contributing to a rate decrease. Note that this effectively
involves generating the full quantum dynamics up to tf , as indicated in Eq. (2.42).
Nevertheless, relevant purely quantum phenomena, such as tunneling, take place mostly
between times 0 and ~β, which corresponds to tf ≈ 27 fs for room temperature. Moreover,
it is often useful to treat secondary DoF approximately as, e.g. a thermal bath. In such a
scenario it is possible to integrate the flux-flux autocorrelation function up to the typical
dissipation time of the system, granted that Cff (tf ) ≈ 0.

2.2.4. Response to the electromagnetic field
The various effects of the electromagnetic field on organic molecules are crucial to the
work developed in this thesis, not only in order to comprehend polariton formation but,
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as discussed above, because some chemical reactions can be triggered by light absorption
or by the presence of external electromagnetic fields. Let us thus present and discuss in
the following some molecular properties related to the coupling to the electromagnetic
field. In the dipolar gauge, the full interaction Hamiltonian is

Ĥint = − 1

ε0

∑
α

µ̂α · D̂⊥(r) +
1

2ε0

∫
d3rP̂2

⊥(r). (2.45)

We see that in these expression the only EM contribution comes from the displacement
field D̂⊥(r), and therefore the second term contributes to the matter Hamiltonian by
renormalizing its energy8. Here we only discuss the effect on the molecules of the dipolar
term ∝ µ̂ · Ê⊥(r), which dominates the light–matter interaction. The dipole moment
operator of the molecules becomes of great relevance in this picture. In general, this
operator is defined as

µ̂ = −e
Ne∑
i

r̂i + e
Nn∑
j

ZjR̂j (2.46)

for a molecule with center of mass at R = 0. The dipole operator in Eq. (2.46) is
expressed in an spatial basis. However, depending on the particular problem, we might
be interested in transforming this operator to an adiabatic (BOA) or diabatic basis.

Molecular polarizability

When a molecule9 is exposed to an external electric field the charges it is composed of
tend to rearrange in order to minimize the energy. This can alter the properties of the
system, being the electric dipole moment of particular interest. The total dipole moment
in the presence of the electric field can be written in terms of polarizabilities as

µ = µ0 + αE +
1

2
βE2 + . . . . (2.47)

The term µ0 corresponds to the actual permanent dipole moment of the molecule. The
additional terms are collectively known as the induced dipole moment, and are character-
ized by the polarizability α and hyperpolarizabilities of increasingly higher order (such as
β). These are tensors that present larger ranks for increasing polarizability order. In the
following we are going to focus on the lowest-order modification of the dipole moment,
described by the polarizability α, and neglect any effect of the hyperpolarizabilities.

8In section 2.3 we analyze the relevance of this term when not all EM modes are explicitly considered.
9In this thesis we are mainly interested in molecules, but this occurs for any set of charges such as
atoms, quantum dots, nanoparticles, etc.
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In many situations the polarizability can be of great importance, such as in molecules
with permanent zero dipole, where the main contribution to the response to an elec-
tromagnetic field is given by the polarizability. Moreover, electric fields with source in
other charge distributions may induce dipoles in these molecules so that they experience
an interaction. These interactions are known in general as van der Waals forces, which
are typically weak and short-range but often play a fundamental role in many diverse
fields such as biology or nanotechnology. The polarizability is also of great importance in
macroscopic media, where the relative dielectric constant depends on the polarizability
of the atoms or molecules that constitute the material through the Clausius–Mossotti re-
lation [209]. Many physical properties of materials depend on the polarizability, which is
central to determine the electronic properties and structure of atoms, molecules, clusters,
etc.

In general, the polarizability α is a tensor and depends on the frequency ω of the
inducing electric field. A complete derivation of this can be found in [210]. We now present
a derivation and a brief discussion of the scalar and static ground-state polarizability.
Let us first define the polarizability as µ = α · E. To express the change in interaction
energy Eint = −µ · E due to an external electric field, let us consider the infinitesimal
work the electric field has to do in order to induce a dipole

dW = −µ · dE = −(α · E) · dE. (2.48)

By integrating from 0 to E we find the total change in energy

W = −1

2
E ·α · E. (2.49)

Let us now find the quantum-mechanical expression for the polarizability by considering
the interacting Hamiltonian

Ĥ = Ĥ0 + Ĥint, (2.50)

where the interaction term Ĥint = −µ̂ · E is treated perturbatively, considering a small
external electric field E. The first-order energy shift will simply be V (1)

0 = −〈0|µ̂|0〉 · E,
which is zero if there is no permanent dipole in the ground state. The second-order energy
shift due to the perturbative potential is thus

V
(2)

0 =
∑
i 6=0

|〈i|µ̂|0〉|2

V0 − Vi
E2, (2.51)
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where Vi = 〈i|Ĥ0|i〉. By comparing the last equation to Eq. (2.49) we find the quantum-
mechanical expression for the scalar and static ground-state polarizability

α0(ω = 0) = 2
∑
i 6=0

|〈i|µ̂|0〉|2

Vi − V0

. (2.52)

Absorption spectra

In the previous section we restricted our discussion to a very simple picture of the polariz-
ability. A generalization of this tensor is known as the scattering tensor, which describes
the scattering processes of electromagnetic radiation with particles. In molecules, we
can distinguish between Rayleigh (elastic) and Raman (inelastic) scatterings. A detailed
discussion of scattering in molecules and its connection to the polarizability tensor is out
of the scope of this theoretical introduction. Nevertheless, for an in-depth explanation
the reader may consult chapter two in the book of Bonin and Kresin [210].
We focus now on the absorptive parts of the scattering process. By using the optical

theorem [211] we find that the frequency-dependent absorption cross section can be
expressed as

σ(ω) =
4πω

c
Im [f(ω)] , (2.53)

where f(ω) is the scattering amplitude at frequency ω, given by

f(ω) =
∑
k

|〈Ψk|µ̂|Ψ0〉|2

ωk − ω0 − ω − iεk
, (2.54)

where the sum runs over all eigenstates |Ψk〉 of the system, being ωk their energy and εk
representing the corresponding linewidth.
Let us review the process of absorption in an organic molecule, schematically illus-

trated in Fig. 2.3. Initially the molecule is in the electronic ground state, with the corre-
sponding nuclear configuration that minimizes the energy. It can then absorb a photon
and be promoted to the first electronic excited state. During this fast transition process
the nuclear configuration is unchanged to a vertical transition10, as Fig. 2.3a shows. This
means that the nuclear wavefunction remained unchanged from its ground state shape.
10The Franck–Condon principle states that the intensity of a vibronic transition (i.e., a change of

electronic and vibrational states) is directly proportional to the overlap between the corresponding
nuclear wavefunctions. This is based on the assumption of a vertical transition, i.e., that there
is some adiabatic separation between nuclear and electronic timescales, similarly as in the Born–
Oppenheimer approximation.
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2.2 Molecular Hamiltonian

Figure 2.3: (a) Typical simplified picture of the energy landscape of an organic molecule with
different processes represented: absorption (dark red arrow), emission (dark blue arrow), and
nuclear relaxation (dashed black arrows). (b) Corresponding absorption and emission (fluores-
cence) spectra for this model system.

However, the equilibrium position in the electronic excited state is often different that
the one in the ground state and the nuclear wavepacket is not an eigenstate anymore, and
will thus evolve on the new PES. Kasha’s rule [212] states that molecules will quickly
relax nonradiatively towards the lowest energy level, thus changing the configuration of
the molecule. Typically this relaxation occurs in much shorter timescales than the life-
time of the excited state. This greatly depends on the molecule, but generally relaxation
occurs in tens of femtoseconds up to a picosecond, while excited state lifetimes are of
the order of nanoseconds [192, 193, 213, 214]. After this period, emission occurs, also as
a vertical transition. Vertical transitions and internal relaxation results in emission of a
photon with different frequency than the absorbed photon, i.e. the molecule is fluores-
cent. This can be seen in Fig. 2.3b, where the maximum of the fluorescence (emission)
spectrum is different that the absorption one. This difference is the Stokes shift.

The lifetime of the electronic excited state can be calculated using Fermi’s golden
rule. It describes the transition probability from one eigenstate of a discrete system to
states in a continuum. It was first derived by Paul Dirac [182] using time-dependent
perturbation theory, and the resulting transition probability per unit time to first order
reads

Γi→f =
2π

~
|〈f |Ĥint|i〉|2ρ(Ef ), (2.55)

where, for the case of transition to the continuum of EM modes in free-space, Ĥint =

45



2 Theoretical background

−µ̂ · Ê⊥ is the interaction Hamiltonian in the dipole approximation and ρ(Ef ) is the
density of final states in the continuum. The lifetime of a vibronic state i can be calculated
by summing Eq. (2.55) over all possible final states |f〉. In the case of isolated molecules
in free space, this lifetime is often the main contribution to the linewidths εk of the
absorptive scattering amplitude of Eq. (2.54). However, in more complex systems the
molecule unavoidably couples to the environment, leading to incoherent processes of
energy loss and quantum decoherence [214, 215]. In this thesis we do not apply any open
quantum system formalism but instead we analyze and discuss the effect of losses on the
results.

2.3. Cavity quantum electrodynamics
The field of CQED has proved that the quantum nature of light can be exploited to dra-
matically modify the behavior of coupled light–matter systems. The microcavity influ-
ences the electromagnetic environment so that the interaction between light and matter
can be enhanced, leading to many interesting phenomena. In this section we analyze the
impact of the cavity on the dipolar Hamiltonian in Eq. (2.21), and review some of the
theoretical descriptions used to study strong light–matter coupling.

2.3.1. Electromagnetic fields in cavities
The geometrical and material properties of the cavity have an effect on the behavior
of light in different ways. A precise microscopic description would encompass the DoF
of all atoms forming the medium, leading to very high computational cost for most
cavities11. A more feasible approach is to describe the medium macroscopically, including
the EM response of the cavity material. Typically this can be done by including the
relative permittivity and permeability of the medium, which in general are complex
functions of frequency. However, a naive extension of the quantization scheme performed
in section 2.1 leads to issues when dielectrics are included. The usual plane wave solutions
in the Helmholtz equation for free space are now replaced by damped plane waves,
which cannot form the complete set of orthonormal functions required to quantize the
field. In macroscopic QED [217, 218] this is solved by using creation and annihilation
operators with spatial dependence that satisfy the Langevin noise equation in order to
accommodate the losses in the medium [219].

11We note that theoretical efforts in this regard have been made for small plasmonic nanoparticles using
time-dependent density functional theory [216].
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Less involved approaches are possible by not including directly the cavity medium
in the quantization scheme, but rather approximate it as perfect reflectors that can
modify the boundary conditions of the system. For instance, it may force the system to
display EM standing waves, as in Fabry–Perot cavities [40], or it might strongly localize
the electric field, as in plasmonic nanocavities [41]. This depends on the properties and
nature of the cavity, which generally are encoded in the EM fields. As discussed in
section 2.1, the form and behavior of the fields is governed by the Maxwell equations. In
the following let us focus on two different cavities and analyze how the Hamiltonian can
be altered.

CQED in a planar cavity

We examine the case of two parallel mirrors of a very large area A situated at z = L/2

and z − L/2 with no sources, such that the fields satisfy the homogeneous Helmholtz
equation. The transverse electric field can be thus written as:

Ê⊥(z, t) = −i
∑
k

∑
λ=1,2

√
~ωk

2ε0LA

(
âk,λek,λe

i(kzz−ωkt) − H.c.
)
, (2.56)

which describes standing waves, where both the frequency and amplitude can be tuned
by modifying the geometry of the cavity. This directly influences the dipolar Hamiltonian,
in which the light–matter interaction is governed by the transverse electric field. The set
of possible EM states allowed by Eq. (2.56) impacts the density of states in Eq. (2.55),
thus altering the decay rate of material excitations. This is the so-called Purcell effect
and will be discussed in more detail later in this section.

The longitudinal part of the electric field, which describes instantaneous Coulomb-
like interactions, is also modified by the presence of the mirrors. The material charge
distribution inside the cavity can induce a redistribution of charges in the material of the
cavity (e.g. a metallic mirror), which can be easily understood in terms of the method
of image charges. This introduces a new interaction that can be written in terms of the
charge density of the system:

Vimag =
1

2

1

4πε0

∫
d3r

∫
d3s

ρ(r)ρ̃(s)

|r− s|
, (2.57)

where ρ̃(s) corresponds to the charge density of the images, which will depend on the
geometry of the cavity. Note the new prefactor 1/2 that we need to add for interac-
tion between the charge distribution and the induced charge distribution. The intuition
behind this is that as a charge moves a distance dr towards the mirror boundary, the
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image charge gets also dr closer, so the actual work dW required to move a distance dr
corresponds to a standard charge Coulomb interaction that has moved 2dr.
In a mirror cavity the induced charge distribution is given by ρ̃(s) = −

∫
d3r′ρ(r′)δ(s−

σr′), where σr′ is the virtual location in the mirror corresponding to the charge at r′.
Interestingly, it can be shown [187] that for this particular example of a planar cavity the
interaction with the images exactly cancels with the longitudinal polarization density,
i.e., 1

2ε0

∫
d3rP̂2

‖(r) + Vimag = 0, and thus the effect of the cavity is only included in
the transversal field of Eq. (2.56). This is not the case for more general cavities, such
as metallic geometries that can host plasmonic modes, where both the transversal and
longitudinal fields are modified.

Light–matter Hamiltonian in the quasistatic limit

In order to study the Hamiltonian in a nanoscale cavity such as systems hosting plas-
monic modes, we rewrite the minimal coupling Hamiltonian of Eq. (2.17), explicitly
written in terms of the EM fields:

Ĥ =
∑
i

1

2mi

[
p̂i − qiÂ(ri)

]2

+
∑
i>j

qiqj
4πε0|r̂i − r̂j|

+
ε0
2

∫
dV
(
Ê2
⊥ + c2B̂2

)
. (2.58)

The collection of charged particles represented by the first two terms form both the
material part of the cavity and quantum emitters. We now assume that the cavity–
emitter system is well-described within the quasistatic approximation, which applies
when all distances in the problem are significantly smaller than the relevant wavelengths.
In this limit, the role of the transversal fields is reduced to free-space QED effects such
as Lamb shift and radiative decay, which are not significantly modified by the presence
of the cavity. We therefore assume here that the transversal fields are negligible, i.e.,
A = B = E⊥ ≈ 0, and the Hamiltonian simply becomes

Ĥ =
∑
i

p̂2
i

2mi

+
∑
i>j

qiqj
4πε0|ri − rj|

, (2.59)

with the sums over i and j still including all particles in the (nano)cavity as well as the
quantum emitters. The Coulomb interaction of the second term contains the longitudinal
EM fields. We next separate the particles into several groups: one containing the cavity
material, and one for each emitter. We assume that the cavity material is “macroscopic”
enough that it responds linearly to external fields [217, 218, 220–223], and can thus be
well-described by a collection of bosonic modes with frequencies ωk and annihilation
operators ak (e.g., corresponding to the “instantaneous” plasmon modes in [223]). The
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Hamiltonian then becomes

Ĥ =
∑
i

p̂2
i

2mi

+
∑
i>j

qiqj
4πε0|ri − rj|

+
∑
k

~ωk
(
â†kâk +

1

2

)
+
∑
k

(âk+â
†
k)
∑
j

qjφk(r̂j), (2.60)

where the first two terms correspond only to the charges associated with the quantum
emitters and not with the cavity. The following two terms correspond to the bosonic
cavity modes and the interaction of the charges of the emitters (with j running over all
the charges of all the emitters) with the electrostatic potential φk(r), i.e., the Coulomb
potential corresponding to the charge distribution of each cavity mode. By performing
a multipole expansion of the emitter charges, similarly as we did in section 2.2 with a
continuous charge distribution, and assuming that the emitter is uncharged and suffi-
ciently localized, this term can be well-approximated by µ̂ · Ê(rm), i.e., the interaction
of the emitter dipole with the cavity electric field (the gradient of the potential) at the
position rm of the molecule, which we write as

(âk + â†k)
∑
j

qjφk(r̂j) ≈ E1ph,k(rm) · µ̂(x̂, R̂), (2.61)

where E1ph,k(rm) = E1ph,k(rm)εk, with polarization vector ε, is the single-photon electric
field amplitude.

We note that while we have explicitly treated a (nano)cavity within the quasistatic
approximation, in which the cavity fields can be understood as due to the instantaneous
Coulomb interaction between charged particles, it still makes sense to speak of the cavity
modes as electromagnetic or photonic modes with an associated electric field. The modes,
which physically correspond to, e.g., plasmonic or phonon-polaritonic resonances, can
be seen as strongly confined photons. These modes are most easily obtained by solving
Maxwell’s equations for a given geometry, either numerically or with approaches such
as transformation optics [224]. Only in the limit of extremely small nanocavities does
it become possible, and sometimes necessary, to treat them explicitly as a collection of
nuclei and electrons using ab initio techniques [225–227].

2.3.2. Theoretical descriptions
While the dipolar Hamiltonian in Eq. (2.21) includes everything required to fully solve
the cavity–matter system, this is often too complex to be exactly solved. Some approxi-
mations and assumptions are needed to sufficiently simplify the system in order to treat
it. Over the years, this has lead to a plethora of theoretical frameworks that we can use
in order to describe the physics inside a cavity. In the following we overview some models
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and approximations that are commonly used in the context of quantum optics and of
particular relevance to the content of this thesis.

Single-mode Hamiltonian and dipole self-energy

The fundamental Hamiltonian of Eq. (2.21) accounts for the light–matter interaction
within the dipole approximation. This couples matter to all electromagnetic modes of
the system, independently of the properties of the cavity. However, in many hybrid light–
matter realizations, the number of relevant electromagnetic modes is reduced to a few or
even only one. For instance, in the example of a planar cavity, the distance L between
the mirrors only allow photon frequencies with a corresponding wavelength λn = 2L/n,
with n = 1, 2, 3 . . . . In many situations it can be safely assumed that the emitters couple
to only one photonic frequency to which they are resonant, while the effect of the rest of
modes is neglected. This is the so-called single-mode approximation, which is a central
assumption for many results of this thesis. The importance of this consideration in the
field of quantum optics has recently attracted attention, with many studies discussing
its validity [228–230].
The assumption of only one photonic mode has a deep impact in the dipolar Hamil-

tonian of Eq. (2.21), and its consequences must be studied for the particular cavity
geometry. Again, in the case of a simple planar cavity, where the electric field is de-
scribed by Eq. (2.56), the Hamiltonian in the single-mode approximation can be written
as (for the detailed deduction see [231])

Ĥ = ~ωcâ†â+
∑
i

Ĥi+Ĥdd +

√
~ωc

2ε0V

(
â† + â

)
eE ·
∑
i

µ̂i+
1

2ε0V

(
eE ·

∑
i

µ̂i

)2

, (2.62)

where V = LA is the effective volume of the relevant mode, and eE the unitary vector
describing the direction of the electric field. The index i sums over all emitters, which
also have dipole–dipole and dipole–induced-dipole interactions represented by Ĥdd. The
last term is the so-called dipole self-energy term and represents the self-coupling of the
matter to its own field [21, 181, 232]. This coupling is mediated through the omitted
high-frequency EM modes, which effectively can influence relevant dipole interactions.
The dipole self-energy term often represents only a small constant energy contribution

in second-order perturbation theory, and therefore is usually considered unimportant
and is neglected in most common theoretical models in quantum optics. However, in
recent years, its proper inclusion to the light–matter Hamiltonian has become a very
active topic of discussion [228, 230, 232–237]. For instance, it has been found that when
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reaching ultra-strong coupling conditions this term is required in order to fit the theory
with the experimental data [30]. Nevertheless, for most strong coupling realizations this
term can be safely removed, and therefore it is not included in the various theoretical
calculations throughout this thesis. Moreover, many strong coupling realizations rely
on nanocavities that achieve very strong field concentrations, such as small plasmon-
or phonon-polariton nanoantennas and nanoresonators. Particularly, these cavities are
the only currently available systems that can obtain few-emitter strong coupling for
“real” molecules [37, 38, 238–240]. As discussed above, in these cavities the light–matter
interaction is purely longitudinal and, as it is well-known in the literature of macroscopic
QED [219], the dipole self-energy term does not appear when the quantum emitters
interact with longitudinal modes. However, it should be noted that, in this case, Eq. (2.62)
is still accurate if the emitter potential (i.e., φk(r̂j) in Eq. (2.61)) is renormalized so that
it represents the effect of the high-frequency modes12, thus avoiding double counting of
modes [231].

Tavis–Cummings model

The single-mode Hamiltonian constitutes the starting point for many theoretical descrip-
tions of cavity QED. Now we wish to model the interaction of N identical emitters char-
acterized as two-level systems with a single cavity mode. For simplicity we assume that
there is no direct interaction between the emitters, for example assuming large distances
between them. They only collectively interact with the cavity mode. In this treatment
we disregard terms that often only contribute as global shifts in energy without affect-
ing the excitation transition mechanism, such as the permanent dipole of the emitters
(〈g|µ̂|g〉 = 0) or the ground-state energies of both the cavity and the emitters. Finally,
from now on, we use atomic units unless stated otherwise (4πε0 = ~ = me = e = 1, with
electron mass me and elementary charge e). With these considerations we can write the
following Hamiltonian:

Ĥ = ωcâ
†â+

N∑
i

[
ωeσ̂

†
i σ̂i + gi

(
σ̂†i + σ̂i

) (
â† + â

)]
, (2.63)

where we define the creation and annihilation operators for the two-level system

σ̂† = |e〉〈g|, σ̂ = |g〉〈e|. (2.64)

Note that the full light–matter coupling is encoded in the parameter gi = E1ph·µeg, which
depends both on the single-photon electric field amplitude E1ph and the transition dipole
12This also includes the emitter–emitter interactions in the multiple-emitter case.
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moment from ground to excited state µeg. Eq. (2.63) is known as the Tavis–Cummings
(TC) or Dicke Hamiltonian [241, 242]. For the case of a planar cavity, the electric field
amplitude is given by E1ph =

√
~ωc

2ε0V
eE. It is then straightforward to see that Eq. (2.63)

corresponds to the single-mode Hamiltonian where both the dipole–dipole interactions
and the dipole self-energy term have been neglected.
The Hamiltonian in Eq. (2.63) contains terms that do not conserve the total number

of excitations of the system, namely σ̂†i â† and σ̂iâ. By transforming the Hamiltonian into
the interaction picture, we find that the interaction term now reads

Ĥint =
∑
i

gi

[
â†
(
σ̂ie

i(ωc−ωi)t + σ̂†i e
i(ωc+ωi)t

)
+ â

(
σ̂ie

i(−ωc−ωi)t + σ̂†i e
i(−ωc+ωi)t

)]
. (2.65)

Note that the terms that do not conserve the number of excitations oscillate with fre-
quencies ωc + ωi, much faster than the detuning frequency δ = ωc − ωi at which the
other terms oscillate. If the couplings gi are small enough the fast dynamics are not
appreciable and quickly average to zero. Neglecting these terms constitutes the so-called
rotating wave approximation (RWA) [21] and the resulting Hamiltonian now conserves
the total number of excitations, i.e.

[
Ĥ, n̂

]
= 0 for n̂ = â†â +

∑
i σ̂
†
i σ̂i and

Ĥ = ωcâ
†â+

N∑
i

[
ωeσ̂

†
i σ̂i + gi

(
σ̂†i â+ σ̂iâ

†
)]
. (2.66)

Since this Hamiltonian conserves the number of excitations, we can analyze the system
within the subspace of interest. We can now analyze the collective effects in the single-
excitation subspace, which determines the linear properties of the system, e.g. absorption
under not too strong driving.13 It is possible to define the collective operator [243]

Ŝ† =
1√∑N
i g

2
i

∑
i

giσ̂
†
i , (2.67)

with which the whole light–matter Hamiltonian can be simply rewritten as

Ĥ = ωcâ
†â+ ωeŜ

†Ŝ +
ΩR

2

(
Ŝ†â+ Ŝâ†

)
, (2.68)

where we have defined ΩR = 2
√∑N

i g
2
i . This quantity is the Rabi splitting, a crucial

magnitude in strong coupling that will be discussed more in depth in the last part
of this section. Note that the collective operators allow us to reduce the system to a
13The exact diagonalization of Eq. (2.63) can be done without invoking the RWA. However, for the

sake of brevity we present the diagonalization within the single-excitation subspace.
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2× 2 Hamiltonian, analogous to the scenario of a single-emitter coupled to a single light
mode. However in this case, instead of coupling the excited state of one emitter, we have
the so-called bright state defined as |B〉 = Ŝ†|0〉, where |0〉 is the vacuum state. This
superposition of excited states collectively couples to the light mode, and the resulting
eigenstates of the system (the polaritons) are thus a superposition of bright state and
cavity mode. The remaining N − 1 states orthogonal to |B〉 that Eq. (2.66) include but
are not described in Eq. (2.68) are known as dark states, and are completely uncoupled
from the light mode. Even in configurations with many photonic modes (e.g., planar
cavities), more than one emitter state is coupled to the photonic mode (typically at low
in-plane momentum), but there remain many uncoupled (dark) modes at higher in-plane
momentum [14, 244]. These states have energies identical to the uncoupled emitters,
ωDS = ωe, obscuring further the actual nature of the dark modes, with discussions on
whether they are actually affected by strong coupling, or whether they should be thought
of as completely unmodified emitter states. In this thesis we shed light on this problem
by including the internal rovibrational structure of the molecules in the strong coupling
description.

One importance consequence of the TC Hamiltonian is that the Rabi splitting depends
on the sum of all the individual emitter–cavity couplings. If we picture the simple scenario
where we have N identical emitters in a uniform electric field, we have gi = g for all
emitters, and thus ΩR = 2

√
Ng. The Rabi splitting is enhanced when an ensemble of

emitters collectively interact with the cavity mode. This is one of the key features of
collective strong coupling. The collection of emitters couple through the bright mode to
the cavity with a resulting enhancement of the eigenmode energy splitting of the system
of ∼

√
N . Virtually all current experimental strong coupling realizations are achieved

by collective strong coupling, using large ensembles of emitters, making the density of
emitter dipoles one of the key magnitudes in strong coupling.

Extension to more complex emitters

The description for the light–matter Hamiltonian discussed above is useful when the
emitters can be well-characterized by two-level systems. In the case of organic molecules
this is not always true, as they present a plethora of various internal DoF, often re-
sulting in very complex internal structures. Furthermore, this simplified description be-
comes useless when trying to describe intricate chemical processes. When describing
molecules, it is necessary to include a more complete description of the level structure.
For instance, the Holstein–Tavis–Cummings Hamiltonian [145, 154–156, 245–247] is a
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generalization of Eq. (2.63) that treats nuclear motion as harmonic oscillator eigenstates,
allowing diagonalization of the full bare-molecule Hamiltonian. This is especially useful
for describing phenomena close to the equilibrium position, where the electronic PESs
are well-characterized by harmonic potentials, and has been successfully implemented
in numerous studies for molecular processes in strong coupling [248]. However, in some
phenomena that are far from equilibrium, such as in chemical reactions, the assumption
of harmonic electronic PES is not valid, and other methods are necessary.
Another approach consists in extending density functional theory to also include pho-

tonic DoF, leading to a quantum-electrodynamical density functional theory [147, 160,
249, 250]. This would allow for numerically feasible ab initio simulations of complex
correlated light–matter systems, where instead of solving the full matter–photon wave-
function, a set of approximate self-consistent equations of motion for specific quantities
can be solved. The main challenge of this powerful idea relies on developing suitable func-
tionals that describe light–matter interactions based on the electron–photon density.
A more complete description can be achieved by using the Born–Oppenheimer approx-

imation in molecules. This allows to describe the system as a collection of independent
electronic states characterized by PESs. As discussed in section 2.2, this is standard
procedure in organic molecules in chemistry. However, the cavity introduces new degrees
of freedom that have to be somehow included in this approximation. This is the main
focus of chapter 3 and chapter 4, in which we discuss how to perform this adiabatic
separation in a light–matter coupled system. We do this by describing photons as dis-
crete DoF and on equal footing as the electrons of the system, thus separating these two
coordinates together from the nuclei [146]. This allows a similar description to the one
of the Tavis–Cummings Hamiltonian in which we add an explicit dependence on the nu-
clear configuration to the molecular energy and transition dipole moment. The detailed
discussion of this theory and the validity of the BOA in electronic strong coupling are
some of the main results of this thesis. The idea is first explored in chapter 3, where
first-principles molecular models are exploited to test the validity of such adiabatic ap-
proximation. Then in chapter 4 we formalize this theory and present a generalization for
an arbitrary number of molecules.
We note that another type of adiabatic separation is possible by treating the pho-

tons on equal footing as the nuclear DoF. In the Born–Opennheimer approximation this
means to treat the photonic mode as a continuous coordinate, and separating it together
with the nuclei from the electronic DoF. This is known as the cavity Born–Oppenheimer
approximation [147, 148], and because the separation is performed with the low-energy
nuclear motion, it works better for ground-state molecules coupled to low-energy pho-
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tonic modes such as in vibrational strong coupling. We present this approximation and
discuss its validity in detail in chapter 6.

2.3.3. From weak to strong light–matter coupling
Finally, let us discuss the different regimes of light–matter interaction depending on the
strength of the coupling. The rate of energy exchange between the quantum emitter
and the electromagnetic field increases with the coupling, and allows us to differentiate
between two distinct regimes of interaction: the weak and strong coupling regimes.

Weak coupling regime and Purcell effect

In the weak coupling regime the light and matter energy exchange is slower than the decay
rate of one of the constituents. Most light–matter interactions in nature occur in this
regime, where the electromagnetic field is not confined and thus the coupling strength
is very small. This means that the interaction term between quantum emitters and the
electromagnetic field can be treated perturbatively and thus approaches like Fermi’s
Golden rule are applicable (see section 2.2). One important consequence of the presence
of the cavity is that it reshapes the density of states of the electromagnetic environment.
This can strongly impact the decay rate given by Fermi’s Golden rule in Eq. (2.55) by
enhancing the spontaneous emission rate of the emitter. This phenomenon is known
as the Purcell effect, in which the lifetime of the emitter is decreased by adding an
additional decay channel. This can improve emission of the quantum emitters achieving,
e.g., single-photon sources with impressive figures of merit in the solid state [251].

The modification of the lifetime of the emitter inside the cavity with respect to outside
the cavity is controlled by the Purcell factor τ0/τ ∝ FP [17], a key figure of merit in
nanophotonics. Different cavity-modified electromagnetic environments lead to different
Purcell factors, as FP depends on the properties of the cavity. In particular, the Purcell
factor goes as

FP ∝
Q

Veff

, (2.69)

where Q is the quality factor of the cavity, which quantifies the sharpness of the relevant
cavity mode through the ratio between the mode frequency ωc and its linewidth κc,
Q = ωc/κc, and Veff is the effective mode volume corresponding to this same mode. The
quality factor describes how good the cavity is in terms of mode lifetime τc = 1/κc, i.e.,
how long it traps a photon. This allows the emitter to potentially reabsorb a photon it
just emitted.
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Let us now discuss the light–matter coupling constant g, which is key to characterize
the weak coupling regime in theoretical frameworks such as the Tavis–Cummings model
(Eq. (2.63)). In general, the coupling constant is directly proportional to the electric field
amplitude and the transition dipole moment of the emitter, and can be defined as

gk(r) =

√
2πωk
Veff(r)

eE · µeg, (2.70)

for the k-th EM mode. For the particular case of a planar mirror microcavity the mode
volume will be Veff ≈ LA, however in general it can be defined as [20]

Veff(r) =

∫
d3rε(r)|E(r)|2

ε(r)|E(r)|2
, (2.71)

where E(r) is the electric field, and therefore Veff effectively depends on the position of the
emitter. The mode volume represents how confined is the light in the cavity. In Eq. (2.70)
we see that in order to maximize the coupling strength for a particular frequency ωk we
need very large emitter dipoles that align with a very confined electric field. It should
be noted that the normalization integral of Eq. (2.71) formally diverges for lossy modes
and a more general definition should properly take this into account [223, 252–254].
The light–matter coupling characterizes the energy exchange between light and matter.

The larger g, the shorter this exchange process takes. When this is faster that the typical
lifetime of either constituent, i.e. if g � γ, κc, with γ the linewidth of the emitter reso-
nance, we enter the strong coupling regime. A photon emitted by the matter constituent
is reabsorbed and re-emitted several times before it finally leaks out of the cavity. This
can be achieved by improving the cavity through an increase of Q, i.e., enhancing the
lifetime of the EM mode inside the cavity, or by decreasing Veff , i.e., confining the electric
field and thus increasing its strength14. Therefore the Purcell factor becomes a very im-
portant quantity to optimize for the achievement of strong coupling. Unfortunately, FP
is very difficult to enhance arbitrarily as typically cavities with smaller mode volumes
strongly restrict the quality factor, and vice versa [40].

Strong coupling: a simple picture

In order to analyze the strong coupling regime let us present a very simplified model
in which we consider a single two-level emitter coupled to a single-mode cavity within
the RWA, described by the Jaynes–Cummings model [241], the single-emitter version of
14Note that this also depends on the choice of quantum emitter, as very large Q factors are not useful

if the emitter has a broader linewidth than the cavity.
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2.3 Cavity quantum electrodynamics

Eq. (2.66).15 Moreover, we will focus on the low-pumping regime so that we can study
only the single-excitation subspace, thus reducing the Hilbert space of the problem to
only two states: an excited emitter |e〉 while the cavity is in the vacuum state |0〉, and
a cavity photon |1〉 while the emitter is in its ground state |g〉. This leads to the 2 × 2

Hamiltonian in the basis {|e, 0〉, |g, 1〉} that reads

Ĥ =

(
ωe g

g ωc

)
, (2.72)

where g = E1ph · µeg is the coupling constant and E1ph the single-photon electric field
amplitude. As presented above, the losses of the system have a great relevance in the
definition of strong coupling and we wish to include them in this simple model. From
a theoretical point of view, the losses represent external degrees of freedom not directly
represented in our Hamiltonian but that couple to the system and can irreversibly affect
it. We can model this loss of energy by adding an imaginary part to the energies of each
constituent16. We thus set

ωe = ω0 − iγ/2; ωc = ω0 − iκ/2, (2.73)

where we consider the system to be in resonance at energy ω0. If we now diagonalize the
system we see that the new eigenvalues are

E± =
ωe + ωc

2
± 1

2

√
(ωe − ωc)2 + 4|g|2. (2.74)

Note that due to the complex energies we can achieve negative values inside the square
root, so that the eigenenergies E± can experience changes only in the imaginary part,
effectively resulting in a modification of the decay rate.

In Fig. 2.4a and Fig. 2.4b we represent the new energy and lifetime of the resulting
eigenstates as a function of the coupling g, for γ/ω0 = 0.04 and κ/ω0 = 0.1. These
correspond to the real and imaginary part of E±. We see that initially (blue region)
only the imaginary part is modified while the real part remains unaffected. This is a
basic reproduction of the Purcell effect, where the lifetime τ ∼ 1/γ of the emitter is
decreased in the weak coupling regime. We can see this in the absorption spectrum in
Fig. 2.4c, reproduced with a sum of Lorentzians, where for small couplings the width of
the peak broadens. In Fig. 2.4d we represent the population dynamics of the system for
15This is equivalent to treating the many-particle TC Hamiltonian with collective operators, thus rep-

resenting the coupling between the bright state and the cavity mode.
16This is equivalent to consider a Lindblad master equation approach and neglecting the excitation

refilling terms, making the ground state a population reservoir [255, 256].
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Figure 2.4: Simple representation of the weak and strong coupling regimes. (a) Real part of
the eigenenergies and (b) decay rates of the eigenstates (polaritons) of the Hamiltonian as a
function of the coupling strength. (c) View of the energy splitting in the absorption spectrum
for different values of the coupling strength. (d) Population dynamics for the stated initiated
in the excited emitter state |e〉. The decay rates are γ/ω0 = 0.04 and κ/ω0 = 0.1.

the initial state |Ψ(t = 0)〉 = |e〉. This is obtained by solving the Schrödinger equation
i∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉 for Eq. (2.72). For g/ω0 = 0 the emitter does not interact with the
cavity and the population decay is governed by the loss rate γ. As the coupling increases
the decay rate of the emitter is modified and the population decays faster to the ground
state (see green curve for g/ω0 = 0.01). The highest emission rate out of the cavity is
achieved just before entering the strong coupling regime [257].

As coupling increases further, we start seeing a splitting in the real part of the energies,
indicating the onset of the strong coupling regime (red region). The new eigenstates of the
system are the upper (+) and lower (−) polaritons. While in Fig. 2.4a the two states split
in energy for small couplings, this cannot be seen in the absorption spectrum due to the
linewidths of each peak. As the coupling is increased, so is the energy separation and the
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states are properly resolved in absorption (Fig. 2.4c). This energy separation E+−E− =

ΩR is the so-called Rabi splitting, which is the natural frequency of coherent energy
exchange between cavity and emitter. This is illustrated in the yellow curve of Fig. 2.4d,
where a characteristic oscillatory behavior with frequency ΩR can be observed for the
excited emitter. These are known as Rabi oscillations, and they are the signature of cavity
and emitter exchanging excitation, indicating that they are no longer the eigenstates of
the system [21, 258].

While this an oversimplified description of the phenomenon of strong coupling, it
already captures the key physical elements that characterizes this regime. If no losses
are considered, Rabi oscillations are always observed. However, these are not reasonable
scenarios since in realistic systems the criterion of achieving strong coupling is that the
Rabi frequency overcomes the typical decay timescales of the emitter and the cavity. In
experiments the usual criterion for the onset of strong coupling is that the absorption
peaks are well-resolved. Nevertheless, it should be noted that in more complex systems
the crossover between weak and strong coupling regimes may not be so well-defined.
Throughout this thesis we do not explicitly include losses in our descriptions of light–
matter interaction, so we always theoretically achieve eigenmode splitting. However, we
do not ignore the role of the losses, as we discuss their effects in our results.

2.4. Summary of methods applied in this thesis
The goal of this final section is to provide a brief summary of some of the methods
and theoretical techniques used throughout this thesis. The fundamental pillar of most
results is the many-molecule Hamiltonian coupled to a light mode:

Ĥ = ωcâ
†â+

N∑
i

(
Ĥ

(i)
mol + E1ph,i · µ̂i(â

† + â)
)
, (2.75)

where the the dipole–dipole interaction between molecules is usually disregarded, with
the exception of section 6.5. Additionally, we do not include the dipole self-energy term.
For most calculations this can be safely removed, as its contribution is of higher order
than the linear dipolar interaction considered. Moreover, this term does not appear in
the interaction with cavities that can be described within the quasistatic approximation,
such as plasmonic cavities, so widely used to achieve few-molecule strong coupling.

In the following two chapters we explore the foundations of a theory of polaritonic
chemistry. In particular, in chapter 3 we analyze the validity of the Born–Oppenheimer
approximation, for which the absorption spectrum of the system in and out of strong
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coupling is calculated. This is done by solving the corresponding system Hamiltonian
and then introducing the resulting eigenstates in the scattering amplitude of Eq. (2.54).
Then, in chapter 4, we directly tackle how to solve the Hamiltonian in Eq. (2.75) for
large number of molecules. This is achieved using collective spin operators, such as the
ones used in the TC model Eq. (2.67).
In chapter 5 we solve again the Hamiltonian in Eq. (2.75) for specific molecular models

that present chemical reactions. In particular, this Hamiltonian is used to calculate
the time evolution of a wavepacket on a PES using the time-independent Schrödinger
equation:

i∂t|ψ(t)〉 = Ĥtot|ψ(t)〉. (2.76)

Furthermore, methods often used in chemistry (see subsection “Chemical processes” in
section 2.2) are exploited in this chapter. For example, in order to explore reaction
pathways, the MEP of the system is calculated using the nudged elastic band method
[259]. Additionally, TST is used to calculate reaction rates in the various processes
analyzed.
Then, in chapter 6 we again use Eq. (2.75) for the case of nanoscale cavities. In order to

analyze the reaction rates of a molecular model, we compute the exact quantum reaction
rate of Eq. (2.42), which is formally equivalent to solving Eq. (2.76). This rates are also
compared to the ones computed using TST. In the theory we develop we apply the cavity
Born–Oppenheimer approximation [147, 148], and present an extension of the discussion
of the subsection “Born–Oppenheimer approximation” of section 2.2. Furthermore, in
order to calculate the ground state of the system we apply perturbation theory to the
Hamiltonian Eq. (2.75), and we discuss the importance of the static polarizability of
Eq. (2.52).
Finally, we note that in all the following chapters, atomic units (a.u.) are often used

(4πε0 = ~ = me = e = 1, with electron mass me and elementary charge e). In particular,
spatial DoF such as nuclear coordinates are expressed in atomic units, which are defined
as the Bohr radius, i.e., 1 a.u. ≈ 0.529 Å.
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3 | Molecular structure in
electronic strong coupling

3.1. Introduction

As introduced in section 1.3, organic molecules were initially used in order to achieve
robust room-temperature strong coupling, and were merely seen as another method
to manipulate light. However, their complex internal structure soon became apparent in
many experiments where nuclear degrees of freedom played a relevant role. The necessity
of a theory of strong coupling that included the rovibrational structure was undeniable.
Such a theory implies having a nucleus–electron–photon coupled system, in which three
different timescales play a role. In section 2.3 we have reviewed different attempts to
treat such systems, but that lacked the potential to describe complex processes such
as chemical reactions. This can be achieved by exploiting the usual picture of poten-
tial energy surfaces (PES), so widely-used in chemistry. However, this approach faces
the challenge of separating not only electronic and nuclear DoF, but also the photonic
one. In here we study in detail the validity of the Born–Oppenheimer approximation
for molecule–cavity systems. In order to do that, we introduce a simple first-principles
model that fully describes nuclear, electronic, and photonic degrees of freedom, but can
be solved without approximations. This allows us to provide a simple picture for under-
standing the induced modifications of molecular structure. This enables us to analyze
the validity of standard approximations in chemistry for our light–matter Hamiltonian.

In section 3.2, after introducing the model, we discuss under which conditions and in
which form the Born–Oppenheimer approximation (BOA) [189, 190] is valid in the strong
coupling regime for a single molecule. The BOA is widely used in molecular and solid
state physics and quantum chemistry, and provides a simple picture of nuclei moving on
effective potential energy surfaces generated by the electrons, which underlies most of
the current understanding of chemical reactions [190]. However, the BOA depends on the
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3 Molecular structure in electronic strong coupling

separation of electronic and nuclear energy scales, i.e., the fact that electrons typically
move much faster than nuclei. It could thus conceivably break down when an additional,
intermediate timescale is introduced under strong coupling to an EM mode. The speed
of energy exchange between field and molecules is determined by the Rabi frequency
ΩR, and typical experimental values of hundreds of meV land squarely between typical
nuclear (' 100 meV) and electronic (' 2 eV) energies. We show that the BOA indeed
breaks down at intermediate Rabi splittings, but remains valid when ΩR becomes large
enough. For cases where it breaks down, we show that the nonadiabatic coupling terms
can be obtained to a good approximation without requiring knowledge of the electronic
wave functions.

In section 3.3, we focus on the effects of strong coupling when more than one molecule
is involved, using two molecules as the simplest test case. In experiments, strong coupling
is achieved by collective coupling to a large number of molecules, under which the Rabi
frequency is enhanced by a factor of

√
N . Despite the fact that strong coupling at the

single-molecule level has already been achieved experimentally [38], in most cavities the
number of molecules is usually much larger, from a few hundred in nanoparticles hosting
LSPs [37], to & 105 within planar microcavities [84, 97, 100, 101]. In this context, it is
well known that only a small fraction of the collective electronic excitations are strongly
coupled [14, 244, 260], with a large number of “dark” or “uncoupled” modes that show no
mixing with the EM mode and no energy shift. We show that even these dark modes are
affected by strong coupling, with the nuclear motion of separated molecules becoming
correlated. This has later been proven to be of great relevance in exciton transport
[123, 127].

3.2. Single molecule

In this section, we introduce our model for a single molecule coupled to an EM mode.
Due to the exponential scaling of the Hilbert space with the number of DoF, solving the
full time-independent Schrödinger equation for an organic molecule without the BOA
is an extremely challenging task that even modern supercomputers can only handle for
very small molecules. We thus employ a reduced-dimensionality model that we can easily
solve, both for the bare molecule and after coupling to an EM mode.
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3.2 Single molecule

Figure 3.1: Top: schematic representation of our molecular model. Bottom: model potentials
for (a) electron-nuclei and (b) nucleus-nucleus interactions.

3.2.1. Bare molecule model
We work within the single-active-electron approximation, in which all but one electron
are frozen around the nuclei, and additionally restrict the motion of the active electron to
one dimension, x. Furthermore, we only treat one nuclear DoF, the reaction coordinate
R. This could correspond to the movement of a single bond in a molecule, but can
equally well represent collective motion, e.g., the breathing mode of a carbon ring. The
effective molecular Hamiltonian then highly resembles that of a one-dimensional diatomic
molecule,

Ĥmol = T̂n + T̂e + Ven(x;R) + Vnn(R), (3.1)

where T̂n = P̂ 2

2M
and T̂e = p̂2

2
are the nuclear and electronic kinetic energy operators (with

P̂ , p̂ the corresponding momenta), and M is the nuclear mass. The potentials Ven(x,R)

and Vnn(R) represent the effective electron–nuclei and internuclear interactions, where
we assume two nuclei located at x = ±R/2. These potentials encode the information
about the frozen electrons as well as the nuclear structure of the molecule, and can be
adjusted to approximately represent different molecules.

The electron–nucleus interaction Ven contains the interaction of the active electron
with each nucleus, as well as with the frozen electrons surrounding it. Assuming a nuclear
charge of Z, we have 2Z − 1 frozen electrons distributed across the two nuclei. For large
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3 Molecular structure in electronic strong coupling

Table 3.1: Molecular model parameters

α Z r0 De A R0 M

R6G 0.2 1 3.2 0.6 2.5 2.8 106

Anthracene 0.271 1 2.2 17.1 0.24 2.88 4.5× 104

distances, the active electron should thus feel a Coulomb potential with an effective
charge of 1

2
from each nucleus. Conversely, at very small distances, the active electron

is not affected by the cloud of frozen electrons and feels an effective charge of Z. Since
we are working within one dimension, we use a soft Coulomb potential to take into
account that the electron avoids the singularity at the nucleus. We choose a simple
model potential fulfilling these conditions:

Ven(r) = −
1
2

+ (Z − 1
2
)e
− r
r0

√
r2 + α2

, (3.2)

where α is the softening parameter, r0 describes the localization of the frozen electrons
around the nucleus, and r is the electron-nucleus distance. The total potential is thus
Ven(x,R) = Ven(|x − R/2|) + Ven(|x + R/2|), shown in Fig. 3.1a.
The internuclear potential Vnn(R) represents the interaction between the nuclei and

the 2Z−1 frozen electrons, i.e., the ground state potential energy surface of the molecular
ion. We model this surface by a Morse potential (see Fig. 3.1b)

Vnn(R) = De

(
1− eA(R−R0)

)2
, (3.3)

which adds three new parameters: the dissociation energy De, the equilibrium distance
R0, and the width of the potential well A. By tuning the seven free parameters we have
at our disposal (M , Z, α, r0, De, R0 and A), we can approximately fit both the electronic
and vibrational structure and absorption spectrum to those of real organic molecules.
We now solve the stationary Schrödinger equation ĤmolΨ(x,R) = EΨ(x,R) for the

bare-molecule Hamiltonian Eq. (3.1) without further approximations by representing
Ĥmol on a two-dimensional grid in x and R. We also calculate the independent PES within
the BOA and the corresponding nuclear eigenstates. For a bare molecule, the results of
solving the Schrödinger equation without approximations and the ones corresponding to
the BOA are virtually identical and thus not shown here.
In the following, we will focus on two model molecules, which approximately repro-

duce the absorption spectra of rhodamine 6G (R6G) and anthracene molecules that are
commonly used in experimental realizations of strong coupling [97, 105, 108]. The molec-
ular parameters used are shown in Table 3.1, all expressed in the appropriate atomic
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3.2 Single molecule

Figure 3.2: Bare-molecule potential energy surfaces of the two first electronic states in the
BOA for (a) the rhodamine 6G-like model molecule and (c) the anthracene-like model molecule.
The vibrational levels and associated nuclear probability densities are represented on top of the
PES. (b) and (d): Absorption spectrum for the (b) R6G-like and (d) anthracene-like molecule
in arbitrary units.

units. Only the first two PES, corresponding to the ground Vg(R) and first electronically
excited Ve(R) states, play a role in the results discussed in the following. They are shown
in Fig. 3.2a and Fig. 3.2c, together with the nuclear probability densities |χ(R)|2 for the
lowest vibrational levels on each PES. Importantly, the two models differ significantly
in two relevant quantities: the vibrational mode frequency ωv and the offset ∆R, i.e.,
the change in equilibrium distance between the ground and excited PES. This offset is
related to the strength of the electron-phonon interaction and influences the Stokes shift
between emission and absorption [214]. The R6G-like model has relatively small vibra-
tional spacing ωv ≈ 70 meV and small offset ∆R ≈ 0.018 a.u., while the anthracene-like
model has large vibrational spacing ωv ≈ 180 meV and large offset ∆R ≈ 0.092 a.u.. Ac-
cordingly, their absorption spectra (Fig. 3.2b and Fig. 3.2d, obtained using Eq. (2.53))
are qualitatively different, with anthracene showing a broader absorption peak with well-
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resolved vibronic subpeaks.

3.2.2. Molecule-photon coupling
We now add a single photonic mode and its coupling to the molecule (within the dipole
approximation) into the molecular Hamiltonian. This is achieved through the single-
mode approximation, which leads to the general Hamiltonian of Eq. (2.62). In the present
calculation we focus on the linear dipolar coupling that dominates the light–matter
interaction, and thus neglect small energy contributions such as the dipole self-energy,
as discussed in detail in section 2.3. The resulting Hamiltonian is

Ĥc−mol = Ĥmol + ωcâ
†â+ E1phµ̂(â† + â), (3.4)

where µ̂ is the dipole operator of the molecule (µ̂ = x̂ in our case1), â† and â are the
creation and annihilation operators for the bosonic EM field mode, ωc is its frequency,
and E1ph is the coupling strength constant, given by the electric field amplitude (along
the x-axis) of a single photon. Note that the Hamiltonian of Eq. (3.4) is analogous to the
Jaynes–Cummings Hamiltonian (or alternatively, the single-emitter TC Hamiltonian) for
an emitter with an arbitrary structure. In the following, we always set the photon energy
ωc to achieve “zero detuning”, with ωc at the absorption maximum of the molecule. This
gives ωc ≈ Ve(Req)− Vg(Req), where Req is the equilibrium position at which Vg(R) has
its minimum.
Compared to the bare-molecule case, the Hamiltonian now includes a new degree of

freedom, the photon number n ∈ {0, 1, 2, . . .}, with the system eigenstates defined by
Ĥc−molΨ(x, n,R) = EΨ(x, n,R). As discussed above, the typical energies associated with
strong coupling in organic molecules are somewhere between the nuclear and electronic
energies. Since in electronic strong coupling the photonic frequency is by definition close
to the energy of the first excited state, it makes more sense to group it with the electronic
Hamiltonian. Indeed, grouping it with the nuclear motion would introduce additional
nonadiabatic couplings, and would not lead to a picture of independent PES on which
the nuclei motion could be calculated, and would thus ruin the advantages of the BOA.
Consequently, the only way to maintain the usefulness of the BOA and keep a picture

1Due to nuclear symmetry, the only contribution to the total dipole moment operator is electronic.
Including an asymmetry in our model makes the nuclear contribution to the dipole non-zero and
thus µ̂ = x̂+ R̂. This would add a non-zero permanent dipole to the molecule, which could introduce
small energy contributions to the PES. We note that this does not change the qualitative analysis
of this chapter, and that we include a discussion of its effects on the ground state in section 6.6.

66



3.2 Single molecule

Figure 3.3: Strongly coupled electronic PES (solid lines) in the singly excited subspace, for
the anthracene-like molecule for (a) E1ph = 0.001 a.u. and (b) E1ph = 0.008 a.u.. The dashed
lines show the corresponding uncoupled states: A molecule in the first excited state, Ve(R), and
a molecule in the ground state with one photon present, Vg(R) +ωc.

of separate surfaces is to include the photonic degree of freedom within the electronic
Hamiltonian, leading to a new set of hybrid polaritonic PESs (PoPESs). We should
mention that an alternative approach is possible by describing the photonic DoF as a
continuous parameter and on equal footing as the nuclear coordinate. This is the so-
called cavity BOA, which is particularly useful for vibrational strong coupling, as we
explore in chapter 6.

We first focus on the singly excited subspace, within which the splitting between
polaritons is observed. Here, either the molecule is electronically excited and no photons
are present, or the molecule is in its electronic ground state and the photon mode is
singly occupied. At zero coupling (E1ph = 0), this gives two uncoupled PES (Ve(R)

and Vg(R) + ωc, dashed curves in Fig. 3.3) that cross close to Req for our choice of ωc.
When the electron–photon coupling is non-zero but small, a narrow avoided crossing
develops instead (solid lines in Fig. 3.3a), while for large coupling strengths, the energy
exchange between photonic and electronic degrees of freedom is so fast that we observe
two entirely new PES (Fig. 3.3b), the hybrid PoPESs that contain a mixture of electronic
and photonic excitation, the hallmark of the strong coupling regime.

As discussed above, the BOA is known to be valid when two PES are sufficiently
separated from each other. This implies that the BOA breaks down when E1ph is small
and the two PES possess a narrow avoided crossing. This in itself is not a surprising
result—when the electron–photon coupling is very small, the system is not even in the
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strong coupling regime, and the photon mode is better treated as a small perturbation.
Fortunately, the weak coupling regime is also not interesting from the standpoint of un-
derstanding or modifying molecular structure through strong coupling. The real question
thus must be: How strong does the electron–photon coupling have to be for the BOA to
be valid, and is this condition fulfilled for realistic experimental parameters? In order to
better quantify the agreement between the BOA and the full solution, we next turn to
an easily measured physical observable: the absorption spectrum.

3.2.3. Absorption
In order to calculate the absorption spectrum that would be observed under driving
by an external field, the details of the experimental setup would have to be taken into
account. For example, for a planar microcavity, an input-output formalism [28] in which
the cavity mode is driven by external photons through the cavity mirrors, would be most
appropriate. On the other hand, if the molecules are placed next to a metallic nanopar-
ticle, an external field would typically drive both the molecules and the localized surface
plasmon resonance. In the following, we calculate the absorption spectra under the as-
sumption that only the molecules are directly coupled to the external light source. This
allows to focus on the influence of the molecular structure on the absorption spectrum,
without contamination from a peak due to the essentially pure EM mode at low coupling.
We have explicitly checked that our conclusions do not depend on the choice of driving
operator. Under these assumptions, the absorption cross section at frequency ω can be
calculated using Eq. (2.53) as described in section 2.2, i.e.,

σ(ω) =
4πω

c
Im

[
lim
ε→0

∑
k

|〈Ψk|µ̂|Ψ0〉|2

ωk − ω0 − ω − iε

]
, (3.5)

where the sum runs over all eigenstates |Ψk〉 of the system with energies ωk, and with |Ψ0〉
the overall ground state. As we do not include incoherent processes in our calculation,
this would give δ-like peaks in the absorption cross section. In the plots shown in the
following, we instead introduce a phenomenological width representing losses and pure
dephasing by setting ε to a small non-zero value, such that the absorption cross section
becomes a sum of Lorentzians. For the bare-molecule case without coupling to an EM
mode, the absorption spectra of our two model molecules approximately agree with those
of R6G (Fig. 3.2b, [108]) and anthracene (Fig. 3.2d, [97]).
In the upper rows of Fig. 3.4 and Fig. 3.5 we compare the absorption cross sections

under strong coupling as obtained from a full calculation without approximations to
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Figure 3.4: Top row: Absorption cross sections of a single R6G-like model molecule, calculated
using the full Hamiltonian without approximation (solid green lines) and within the BOA
(dashed black lines) for several values of the copling strength. Bottom row: Corresponding single-
molecule PES in the single-excitation subspace in strong coupling (solid lines) and uncoupled
(dashed lines).

those obtained within the BOA, for a range of coupling strengths E1ph to the EM mode.
In the bottom rows we also include the corresponding PoPES with one excitation. For
the case of R6G-like molecules with small vibrational spacing in Fig. 3.4 we find that
even for relatively small E1ph the BOA agrees almost perfectly with the full results.
However, for the anthracene-like molecule with a high-frequency vibrational mode and
large offset ∆R, the BOA only agrees with the full result for relatively large values of
E1ph, where the Rabi splitting ΩR (as defined by the energy difference between the two
“polariton” peaks in the absorption spectrum) is appreciably larger than the vibrational
frequency ωv ≈ 180 meV (Fig. 3.5). As an aside, we note here that for intermediate
values of the coupling strength (e.g., for E1ph = 0.002 a.u. in Fig. 3.5b), the EM mode
strongly couples with the individual vibronic subpeaks, as observed in experiments using
anthracene [36, 97].
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E1ph E1ph E1ph

Figure 3.5: Top row: Absorption cross sections of a single anthracenelike model molecule,
calculated using the full Hamiltonian without approximation (solid green lines) and within the
BOA (dashed black lines) for several values of the copling strength. Bottom row: Correspond-
ing single-molecule PES in the single-excitation subspace in strong coupling (solid lines) and
uncoupled (dashed lines).

3.2.4. Nonadiabatic corrections in strong coupling

This qualitative observation can be quantified by calculating the nonadiabtic correction
ΛUP,LP between the resulting PoPES. As discussed in section 2.2, nonadiabatic terms
become more important for small energy differences, and thus large coupling strengths
are a more favorable scenario for in terms of the validity of the BOA in the absorption
spectrum, as they lead to larger differences in energy. In this section we present a simple
model to derive the nonadiabatic corrections induced by strong coupling without any
explicit knowledge of the electronic wavefunctions. We treat the two relevant PES in
the single-excitation subspace, Vg(R) + ωc and Ve(R), coupled by the term E1phµeg(R),
where µeg(R) = 〈e|x̂|g〉 is the electronic transition dipole moment between the ground
and the excited states. This leads to a 2×2 Born–Oppenheimer Hamiltonian of the form

Ĥ(R) =

(
Vg(R) + ωc E1phµeg(R)

E1phµeg(R) Ve(R)

)
, (3.6)
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which can be easily diagonalized to obtain polariton eigenstates |+〉 = cos θ |g, 1〉 +

sin θ |e, 0〉 and |−〉 = sin θ |g, 1〉 − cos θ |e, 0〉, where |a, n〉 is short for |φa(x;R), n〉, and

tan 2θ =
2h(R)

δV (R)
, (3.7)

where we defined δV (R) = Vg(R) +ωc−Ve(R) and h(R) = E1phµeg(R). Using Vavg(R) =

[Vg(R) + ωc + Ve(R)] /2, the eigenenergies are given by

V±(R) = Vavg(R)± 1

2

√
4h2(R) + δV (R)2 . (3.8)

With this model we can now evaluate the nonadiabatic coupling terms, which we can
rewrite as Λ̂kk′ = 〈k| T̂n |k′〉+ 〈k| P̂M |k

′〉 P̂ . In order to obtain simple analytical results we
can introduce a series of approximations. First, we linearize δV (R) ≈ a0(R−Rc) around
the point of intersection between the two PES, where Vg(Rc) + ωc = Ve(Rc). Second, in
the spirit of the Franck–Condon approximation, we assume that the dipole coupling is
constant over the range of relevant R-values, and set h(R) = h0. Following the same
idea, we additionally assume that the electronic wave functions do not change signifi-
cantly with R, i.e., ∂

∂R
|φa(x;R)〉 ≈ 0. This implies that the change in the polaritonic

eigenfunctions |±〉 close to the avoided crossing at Rc is mostly due to the switchover
between the two uncoupled surfaces, i.e., the change in θ(R), not because of an intrin-
sic change of electronic state with R. With these approximations, the correction terms
become

〈−| P̂ |+〉 =
−ia0h0

4h2
0 + a2

0(R−Rc)2
, (3.9a)

〈−| P̂ 2 |+〉 =
2a3

0h0(R−Rc)

(4h2
0 + a2

0(R−Rc)2)2
, (3.9b)

〈±| P̂ 2 |±〉 =
a2

0h
2
0

(4h2
0 + a2

0(R−Rc)2)2
, (3.9c)

with the diagonal terms 〈±| P̂ |±〉 identically zero. Note that diagonal terms only corre-
spond to energy shifts and do not induce additional transitions [190]. The nonadiabatic
coupling between the polariton surfaces has a Lorentzian shape around the avoided
crossing, and as expected only becomes non-negligible close to it.

As shown in Fig. 3.6, the nonadiabatic corrections obtained from this simple model
agree almost perfectly with those obtained from the full numerical calculation for our
anthracene-like model molecule. The only molecule-specific information entering the
model are the PES of the uncoupled molecule and the dipole moment between the cou-
pled surfaces. Specifically, the electronic wave functions are never used here, and their
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3 Molecular structure in electronic strong coupling

Figure 3.6: Nonadiabatic correction terms C that couple the “lower polariton” and “upper
polariton” PES for a single anthracene-like model molecule for a coupling strength of E1ph =

0.002 a.u.. Solid colored lines: results from a full numerical calculation. Dashed black lines:
results from the model Eq. (3.9). Note that while all results are given in atomic units, the units
of the P̂ and P̂ 2 terms are not identical, and thus not directly comparable.

derivative as a function of the nuclear coordinates is not required. This implies that this
model could be used to obtain accurate non-BO corrections that describe the transitions
between potential surfaces even when the full electronic wave functions of a molecule
are not available (e.g., in density-functional-theory calculations). The dynamics of the
molecule could thus be fully recovered within a potential energy surface picture even
when the BOA per se is not applicable.

We now exploit this model to derive a condition for which the BOA becomes a better
approximation, i.e., when the nonadiabatic terms become negligible. We approximate
the bare molecular potential energy surfaces as two harmonic oscillators with the same
vibrational frequency ωv, but with an offset in energy ∆V and equilibrium position ∆R,

Vg(R) ≈ Mω2
v

2
R2, (3.10)

Ve(R) ≈ Mω2
v

2
(R−∆R)2 + ∆V, (3.11)

where without loss of generality, we have chosen the origin in nuclear coordinate and
energy at the minimum of Vg(R). Note that this model exactly results from the common
approximation of linear coupling between a single electronic excitation and a bosonic
vibrational mode [155, 156, 261, 262]. Within this model, δV (R) = Vg(R)+ωc−Ve(R) =

a0(R − Rc) is already exactly linear, i.e., the linearization of the energy difference per-
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3.3 Two molecules

formed above is not an approximation. The constants are given by a0 = Mω2
v∆R and

Rc = ∆R
2

+ ∆V−ωc
a0

. The maximum value of | 〈+| P̂
M
|−〉 |, reached at R = Rc, is given by

∆Rω2
v/(4h0). Comparing this with the energy splitting at that point, V+(Rc)−V−(Rc) =

2h0, gives the condition that ∆Rω2
v/(8h

2
0) must be small compared to the momentum

of the respective nuclear wavefunction (due to the additional P̂ operating on the nu-
clear wave function). The off-diagonal terms 〈−| P̂ 2

2M
|+〉 reach a maximum value (again

relative to the detuning) of M∆R2ω4
v/(25

√
5h3

0) at R = Rc + h0/(M∆Rω2
v).

By analyzing the analytical conditions obtained we find that the model molecules
present two opposite cases for the applicability of the BOA: our R6G-like molecule has
a relatively small vibrational spacing ωv ≈ 70 meV and small electron-phonon coupling,
∆R ≈ 0.018 a.u., while our anthracene-like model molecule has a large vibrational spac-
ing ωv ≈ 180 meV and large electron-phonon coupling, ∆R ≈ 0.092 a.u.. We note that in
many experiments involving organic molecules, ΩR & 500 meV [100, 101] is significantly
larger than typical vibrational frequencies ωv . 200 meV [263]. This shows that the intu-
itive picture of nuclear dynamics unfolding on uncoupled Born–Oppenheimer potential
energy surfaces can often be applied to understand the modification of molecular chem-
istry induced by strong coupling. Additionally, even when the BOA breaks down, the
model presented in here can be used to obtain the nonadiabatic coupling terms without
requiring knowledge of the electronic wave functions. The only necessary input are the
uncoupled PES and the associated transition dipole moments. Even for relatively large
molecules, these can be obtained using the standard methods of quantum chemistry or
density functional theory.

3.3. Two molecules
In this section we will study the case for two molecules. As discussed in section 2.3,
the inclusion of more than one molecule leads to collective strong coupling, where the
linear combination of N emitters so-called bright state couples to the single photonic
mode, while N −1 dark states appear. We thus expect to observe this phenomena in the
following analysis.

3.3.1. Method
We now treat the case of two model molecules, which can still be solved exactly within
our approach, but which displays many of the effects of many-molecule strong coupling.
We extend the Hamiltonian of Eq. (3.4) for two molecules, for which we consider no
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3 Molecular structure in electronic strong coupling

Figure 3.7: (a) Uncoupled potential energy surfaces of two anthracene-like molecules in the
singly excited subspace: Veg0(R1, R2) (orange), Veg0(R1, R2) (blue), and Vgg1(R1, R2) (green).
(b) Coupled PES for E1ph = 0.002 a.u. and (c) E1ph = 0.013 a.u., corresponding to the lower
polariton (orange), dark state (blue), and upper polariton (green). For clarity, only parts where
R1 < R2 are shown (note that the system is symmetric under the exchange R1 ↔ R2).

direct dipole–dipole interaction, but are coupled to a single photonic mode, similarly as
in the TC model (see section 2.3). Then the Hamiltonian for two molecules is

Ĥ2m
c−mol = ωcâ

†â+
∑
j=1,2

(
Ĥ

(j)
mol + E1phµ̂

(j)(â† + â)
)
, (3.12)

where the superscripts j indicate the molecule on which the operator acts. Directly diag-
onalizing this Hamiltonian in the “raw” basis {x1, R1, x2, R2, n} is already a formidable
computational task for typical grid sizes. We thus calculate the full solution by first
diagonalizing the single-molecule Hamiltonian, Ĥmol =

∑
k Ek |k〉 〈k|, and including only

a relevant subset of eigenstates {k} for each molecule in the total basis {k1, k2, n}. The
number of necessary eigenstates to obtain completely converged results is quite small
(≈ 30 per molecule). However, this approach only provides limited insight into the dy-
namics of the strongly coupled system, especially regarding nuclear motion.
We thus again apply the Born–Oppenheimer approximation by separating the nuclear

kinetic energy terms and diagonalizing the remaining Hamiltonian parametrically as a
function of R1 and R2. Similar to above, instead of working in the {x1, x2, n} basis for
each combination (R1, R2), we prediagonalize the single-molecule electronic Hamiltonian
Ĥe(x;R) =

∑
k Vk(R) |k(R)〉 〈k(R)|, where (for the cases discussed here) the sum only

has to include the ground and first excited states to achieve convergence, k ∈ {g, e}. If
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3.3 Two molecules

we additionally allow at most one photon in the system, n ∈ {0, 1}, we obtain an 8× 8

Hamiltonian for each combination of nuclear coordinates R1, R2.
The electronic Hamiltonian consists of all possible combinations of electronic states

Vg, Ve of the two molecules with 0 or 1 photons. A further simplification is achieved
by taking into account that the Hamiltonian conserves parity2 Π = (−1)π1+π2+n, with
πj the parity of the state of molecule j (even or odd). For large coupling E1ph, this
separation by parity avoids some accidental degeneracies between uncoupled PES and
thus improves the BOA. We now obtain two independent 4 × 4 Hamiltonians,

Ĥeven(R1, R2) =


Vgg0 E1phµ

(1) E1phµ
(2) 0

E1phµ
(1) Veg1 0 E1phµ

(1)

E1phµ
(2) 0 Vge1 E1phµ

(2)

0 E1phµ
(1) E1phµ

(2) Vee0

 , (3.13a)

Ĥodd(R1, R2) =


Vgg1 E1phµ

(1) E1phµ
(2) 0

E1phµ
(1) Veg0 0 E1phµ

(1)

E1phµ
(2) 0 Vge0 E1phµ

(2)

0 E1phµ
(1) E1phµ

(2) Vee1

 , (3.13b)

where the uncoupled PES are represented by the compact notation Vαβn = Vα(R1) +

Vβ(R2) + nωc, and the single-molecule dipole transition moment between the ground
and first excited state is denoted by µ(j) = 〈φg(Rj)| µ̂ |φe(Rj)〉. Diagonalizing these
Hamiltonians for each (R1, R2) results in a set of two-dimensional PoPES. In Fig. 3.7,
we show the three surfaces in the single-excitation subspace, corresponding to the three
lowest states of Eq. (3.13b). For zero molecule-photon coupling (E1ph = 0, Fig. 3.7a),
there are now a number of one-dimensional seams where the three PES cross. When the
molecule-photon coupling is turned on, these crossings again turn into avoided crossings,
as shown in panels (b) and (c) for two different coupling strengths E1ph. Following the
natural convention discussed in previous chapters, we label the three PoPES in order of
energy as the “lower polaritonic PES”, the “dark-state PES”, and the “upper polaritonic
PES”.

We first address the applicability of the BOA, which breaks down when two PoPES
are close in energy, for the case of two molecules. Within the single-excitation subspace
(which determines the linear properties of the system, such as absorption), there are

2We note that this is only true because we do not have permanent dipole moments in our model, which
couple states of the form |k, k, 0〉 and |k, k, 1〉.
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3 Molecular structure in electronic strong coupling

now a range of (avoided) crossings. They occur when i) all three surfaces approach each
other Vgg1 ≈ Vge0 ≈ Veg0, ii) the photonically excited PES is close to only one of the
electronically excited PES, Vgg1 ≈ Vge0 or Vgg1 ≈ Veg0, or iii) only the two electronically
excited states cross, Vge0 ≈ Veg0. Case i) corresponds to the TC model at zero detuning,
giving the two polaritonic PES at energy shifts of ±ΩR/2, and an additional dark state
that is unshifted from the bare-molecule case. The BOA in this region is thus valid for
similar conditions as in the single-molecule case, although the PES separation is reduced
by half due to the additional dark-state surface. Case ii) corresponds exactly to the
single-molecule case, with the second molecule acting as a “spectator” that only induces
additional energy shifts. The BOA should thus again be valid for similar conditions
as with a single-molecule, albeit with the coupling reduced by 1/

√
2 for a fixed total

Rabi splitting. Finally, case iii) presents the biggest challenge, as the two electronically
excited PES, Veg0 and Vge0, are not directly coupled, but only split indirectly through
coupling to the photonically excited surface Vgg1. The splitting between the two surfaces
is thus small for large detuning, ∆V ≈ (E1phµ)2/4(Vgg1 − Veg0). This is clearly observed
in Fig. 3.7b along the line R1 = R2, where the dark state PES almost touches the upper
PoPES for small Rs and the lower PoPES for large Rs.

3.3.2. Absorption
The discussion above implies that for almost any coupling strength, there will be regions
in the nuclear configuration space R1, R2 where the BOA breaks down. However, not all
parts of the PES are visited by the nuclei during a given physical process. To explicitly
check the BOA in the subspace relevant for polaritonic physics, in Fig. 3.8 we thus
again compare the absorption obtained within the BOA with that computed by a full
diagonalization of the Hamiltonian Eq. (3.12). Compared to the single-molecule case,
many more molecular levels are present in the system, leading to small changes in the
absorption spectra compared to the single-molecule case. In order to properly compare
the results, we use the same Rabi splitting. In the picture of PoPES, we cannot use the
usual definition of ΩR = E+−E− of the TC model. In the following we therefore define it
as the corresponding separation in equilibrium (minimum of the bare-molecule ground-
state surface Vg(R)) and for zero detuning, which for a collection of many molecules
is

ΩR = 2
√
NE1phµ(Req), (3.14)

where we can tune the single-photon electric field amplitude to achieve the desired Rabi
splitting in our calculations. We therefore take into account the

√
N scaling of the total
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E1ph E1ph E1ph

E1phE1phE1ph

Figure 3.8: Absorption cross section of two molecules driven coherently, calculated using
the full Hamiltonian without approximation (solid green lines) and within the BOA (dashed
black lines). Results are shown for the (a) R6G-like and (b) anthracene-like model molecules,
for several values of the coupling strength E1ph. The values of E1ph are scaled by 1/

√
2 with

respect to the single-molecule case (Fig. 3.4a and Fig. 3.5a) in order to obtain the same total
Rabi frequency ΩR.

Rabi frequency and reduce the coupling strengths by
√

2 to produce the same total
splitting in the case of two molecules.

The BOA is shown to again give good results for large enough coupling, but the
minimum coupling required is increased compared to that for a single molecule. In the
common case of slow nuclear motion, as for our R6G-like model in Fig. 3.8a, the BOA
already is valid for relatively small Rabi splitting of ΩR ≈ 250 meV. However, in the
anthracene-like case of very fast vibrational motion, Fig. 3.8b, the BOA still does not
give perfect agreement with the full model for E1ph = 0.0057 a.u. (ΩR ≈ 600 meV), and
agreement is only reached at roughly twice that value.

In Fig. 3.7 is clear that the new dark state PES is the main source of nonadiabatic
terms that lead to the break down of the BOA. The coupling around some regions in
nuclear coordinate space can be proportional to the single-molecule coupling, which, at
fixed Rabi splitting, goes down when the number of molecules is increased. As discussed
in the previous section, a smaller coupling strength leads to larger nonadiabatic terms.
While this would appear to affect the validity of the BOA close to these configurations, we
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(a) (b)

E1ph (a.u) E1ph (a.u)

Figure 3.9: (a) Coupling between nuclear motion in different molecules for the lower (LP) and
upper polariton (UP) and dark-state (DS) PES. Results are shown as the ratio β/α between the
prefactors of the offdiagonal R1R2 and diagonal R2

i terms in Eq. (3.16), for the R6G-like model
molecule. (b) Mutual information in the nuclear probability distribution for two different states.
The solid lines correspond to the vibrational ground states of the coupled PES as predicted
by Eq. (3.19) using the values of β/α shown in (a), while the dashed lines correspond to the
steady state under driving of a single molecule as defined in Eq. (3.17).

emphasize that these corrections can be computed using standard methods of quantum
chemistry or density functional theory. The picture of PoPES is thus not hindered by
increasing the number of molecules, as it provides an intuitive and powerful description
of the system, from which nonadiabatic corrections can be easily computed.

3.3.3. Nuclear correlation
Having established the validity of the BOA for many relevant cases and Rabi splittings
comparable to experimental values, we now discuss the implications of collective strong
coupling for the internal molecular (nuclear) dynamics. The BOA provides a straightfor-
ward approach to this problem. Any two-dimensional surface can be decomposed into
a sum of independent single-molecule potentials, plus a remainder that describes the
coupling between the nuclear motion of the molecules,

V (R1, R2) = V1(R1) + V2(R2) + V12(R1, R2). (3.15)

The nuclear motion of two molecules is independent if and only if the coupled part
V12(R1, R2) is identically zero. In order to quantify this coupling, we expand each of the
coupled surfaces in the single-excitation subspace around its minimum (R0

1, R
0
2), giving

V (R1, R2) ≈ V0 + α δR2
1 + α δR2

2 + β δR1δR2, (3.16)
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with V0 = V (R0
1, R

0
2) and δRi = Ri−R0

i . Note that due to symmetry under the exchange
R1 ↔ R2, the prefactor α is the same for δR2

1 and δR2
2. As can be seen in Fig. 3.9a,

both the polariton and even the dark state PES show significant coupling of the nuclear
degrees of freedom, with values of β/α on the order of a few percent for values of
E1ph . 0.01 a.u. giving Rabi splittings of . 1 eV (see Fig. 3.8). Interestingly, the coupling
is much larger for the lower PoPES than for either the upper PoPES or the dark state
PES, and decreases with increasing E1ph for all three surfaces. We therefore conclude
that even dark states that have negligible mixing with photonic modes are affected by
strong coupling, in the sense that the nuclear degrees of freedom of separate molecules
behave like coupled harmonic oscillators, and their motion becomes correlated. This
implies that, e.g., local excitation of nuclear motion within one molecule could affect the
nuclear motion in another, spatially separated molecule, even when no photon is ever
present in the EM mode of the system.

Note that the BOA results predict monotonously increasing correlation for arbitrarily
small (but non-zero) values of E1ph. This again shows that the BOA is not correct in
the limit of small coupling E1ph → 0, where the correlation should also go to zero as the
molecules are completely uncoupled. We thus start Fig. 3.9a at E1ph = 0.002 a.u., for
which the BOA already produces good agreement with the full result in the absorption
cross section (see Fig. 3.8), and note that our results indicate that there is a maximum
of correlation in the nuclear motion at intermediate coupling strengths.

In order to verify these results outside the BOA, we calculate the mutual information in
the nuclear probability distribution both for the harmonic expansion of Eq. (3.16) within
the BOA and under external driving of a single molecule. From first-order perturbation
theory, the driven steady state is given by

∣∣ψdr
1 (ω)

〉
=

1

Ĥ − ω0 − ω − iε
µ̂1 |ψ0〉 (3.17)

which we solve using the full Hamiltonian without approximations. We again use a
non-zero ε to artificially represent losses in the system (for the results below, we choose
ε = 2.5 meV, corresponding to an effective decay rate of 5 meV). While the eigenstates of
the Hamiltonian split into quasidegenerate symmetric and antisymmetric superpositions
(which show large correlation) for any non-zero E1ph, the non-zero value of ε leads to a
smearing of the energy resolution, such that the degeneracy is effectively lifted and the
superposition of only a single molecule being excited is observed in the steady state for
small enough E1ph.
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The mutual information is calculated as [264]

I =

∫∫
P (R1, R2) log2

P (R1, R2)

P (R1)P (R2)
dR1dR2, (3.18)

with P (R1, R2) being the joint nuclear probability distribution for either the driven
steady-state wave function

∣∣ψdr
1 (ω)

〉
or the ground state of two coupled harmonic oscil-

lators. For the latter, I can be analytically calculated as

I0 = log2

√
2− β/α +

√
β/α + 2

2 4
√

4− β2/α2
. (3.19)

In order to compare with the predictions obtained from the ratio β/α for the PES,
we choose driving frequencies ω equal to the vibrational ground state energies of each
surface. The dashed lines in Fig. 3.9b show that, as could be expected, at zero coupling
(E1ph = 0) there is no correlation under driving of a single molecule. As E1ph increases,
the mutual information quickly increases and actually becomes significantly larger than
the BO ground-state values for the DS and upper PoPES. In this region, there are
a series of avoided crossings, and the results are expected to depend strongly on the
correct description of decay and dephasing, which we only treat phenomenologically.
For larger E1ph, where the BOA becomes valid, the mutual information in the driven
steady state agrees very well with the mutual information as predicted from the coupling
β/α in the Taylor expansion of the PES. Interestingly, the agreement between the full
calculation and the BO result for the LP PES is very good even at relatively low coupling
strengths. This is a consequence of the fact that the LP ground state is well-isolated in
energy, while the DS and UP surfaces are not. We believe that this property is also
related to the experimentally observed fast nonradiative decay of upper polariton states
[100, 127, 150, 265], which can take place efficiently close to avoided crossings of the
PES (where the BOA breaks down).

3.4. Conclusions
In this chapter we studied in detail how strong coupling can influence the internal struc-
ture of organic molecules, and the limitations of the usual Born–Oppenheimer picture.
We show under which conditions the molecular properties under strong coupling can
be understood by the modification of the potential energy surfaces determining nuclear
dynamics under the Born–Oppenheimer approximation. In particular, we found that in
many cases of experimental interest where the Rabi splitting is large, the BOA is ap-
plicable and provides an intuitive picture of the strongly coupled dynamics. However,
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we have also shown that for molecules with fast vibrational modes and large phonon-
exciton couplings, the BOA can break down and nonadiabatic corrections are required
in order to fully describe the energy landscape. We furthermore demonstrated that the
nonadiabatic coupling terms between PES in this case are dominantly due to the change
of character between light and matter excitations which can be obtained from simple
few-level models without requiring knowledge of the electronic wavefunctions.

In addition, we show that under collective strong coupling involving more than one
molecule, the nuclear dynamics of the molecules in electronic “dark states” that are only
weakly coupled to the photonic mode are nonetheless affected by the formation of strong
coupling. In particular, we find that the dark state PES describes coupling between the
nuclear degrees of freedom of the different molecules.

These results validate the use of the Born–Oppenheimer approximation in molecular
polaritonics and thus lay the groundwork for the following chapter, where a more general
theory of polaritonic chemistry is developed. This theory is based on the concept that we
have introduced here of polaritonic potential energy surfaces, which extends the usual
PES of chemistry to hybrid light–matter systems participating a collection of molecules.
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chemistry

4.1. Introduction
In the previous chapter we embraced the complexity of organic molecules by including
arbitrary PES in our description of strong coupling with the aim of building a general
theory of polaritonic chemistry. In this chapter we generalize these results and analyze
the approach of PoPES. We study the general light–matter Hamiltonian from the point
of view presented in chapter 3, i.e., by separating the electronic and photonic DoF from
the nuclear coordinates. In section 4.2 we explicitly analyze this in a complete and gen-
eral way, also presenting a conceptual molecular energy landscape that presents some
kind of excited-state process that can be strongly influenced in strong coupling. Then, in
section 4.3 we present the potential of the PoPES picture for describing collective phe-
nomena. We show how we can use the spin operators used in the Tavis–Cummings model
(see section 2.3) to understand such a complex system. The ensemble of N molecules
is formally identical to a single “supermolecule” that encompass the internal DoF of all
molecules. This immediately leads to novel phenomena such as the collective protection
effect and collective conical intersections, both discussed in detail in this section.

4.2. Polaritonic potential energy surfaces
In order to theoretically describe phenomena in polaritonic chemistry we need to extend
the chemistry formalism discussed in section 2.2 to a collection of N molecules coupled
to one or several quantized light modes. The total Hamiltonian is given by

Ĥtot =
N∑
i

T̂ (i)
n +

N∑
i

Ĥ(i)
e + ĤEM +

N∑
i

Ĥ
(i)
int, (4.1)

83



4 Theory of polaritonic chemistry

where the kinetic energy operator and the electronic Hamiltonians of all molecules have
been explicitly taken into account. Note that in Eq. (4.1) we directly disregarded the
direct dipole–dipole interaction between molecules. Additionally, note that we neglect the
dipole self-interaction term as discussed in section 2.3, restricting the generality of this
Hamiltonian to quasistatic cavities [219] or to coupling strengths outside the ultrastrong
and deep coupling regimes. Finally, it should be noted that the Hamiltonian in Eq. (4.1)
is also the starting point of more reduced models such as the TC Hamiltonian, or the
Holstein–Tavis–Cummings model [155].
The picture of PoPES is inspired by the formal similarities between Eq. (4.1) and the

standard molecular Hamiltonian discussed in section 2.2

Ĥmol = T̂n + Ĥe(R). (4.2)

In the previous chapter we studied the adiabatic separation of nuclear and electron–
photon energies from first principles. We now explicitly write the general “electronic–
photonic” Hamiltonian

Ĥe−ph(q) = Ĥtot −
N∑
i

T̂ (i)
n , (4.3)

where q = (R1,R2, . . . ,RN) is the vector describing all nuclear coordinates of all
molecules. For future reference, let us now write this Hamiltonian explicitly for one
single photonic mode:

Ĥe−ph(q) = ωcâ
†â+

N∑
i

(
Ĥ(i)

e (Ri) + E1ph,i · µ̂i(Ri)(â
† + â)

)
, (4.4)

where the exciton–photon interaction is determined by the single-photon electric field
amplitude E1ph,i, which may be different from one molecule to another. Analogously as
for a single molecular Hamiltonian, the diagonalization of Ĥe−ph(q) yields an adiabatic
basis of hybrid electron–photon states {Φk(q)} with the corresponding PoPES Vk(q).
It should be noted that this new electronic–photonic basis used in the Schrödinger

equation leads to the usual set of differential equations analogous to Eq. (2.29), with
new nonadiabatic terms. In this picture we can again perform the BOA and neglect
these terms. However, these nonadiabatic corrections Λkk′ in the new adiabatic basis of
polaritonic states now contain both the original bare-molecule nonadiabatic couplings
(appropriately transformed to the polaritonic basis) and the light–matter induced nona-
diabatic couplings, as discussed in chapter 3.
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4.2 Polaritonic potential energy surfaces

Figure 4.1: Conceptual potential energy surfaces for a single molecule describing a typical
bound and dissociative energy landscape coupled to a light mode in (a) weak coupling and (b,c)
strong coupling for different coupling strengths. The color represents the photonic fraction of
the state from purely excitonic (orange) through polaritonic (light gray) to purely photonic
(purple).

The electronic–photonic Hamiltonian can be diagonalized in two stages, first by doing
the appropriate adiabatic separation in each individual molecule (i.e., we can express
Ĥ

(i)
e (Ri) in Eq. (4.1) already in the adiabatic single-molecule electronic basis), and then

selecting the relevant subset of bare molecular states coupled to the photonic modes. For
instance, as discussed in section 2.3, for moderate values of the coupling strength the TC
model conserves the number of excitations. This is also true here, which means that for
a single photonic mode, we can restrict the number of electronic states to the ones close
in energy to the photon frequency. This formulation becomes a compelling tool, as it is
straightforward to make an interface with existing quantum chemistry methods, which
can be used to calculate the bare-molecule structure for the desired electronic states at
each configuration R for each molecule separately.

The light–matter coupling can be readily treated with a small Hamiltonian involving
only a few relevant states per molecule. In the following we will study the general proper-
ties of the PoPESs by treating a minimal model of a single molecule with two electronic
states and one nuclear DoF, i.e., the bare molecule is characterized by a ground and
excited PES, Vg(q) and Ve(q) respectively. In Fig. 4.1a we present a typical bound and
dissociative energy landscape of diatomic molecules for a conceptual molecule (see blue
and orange lines in Fig. 4.1a), with an additional purple surface representing the ground-
state molecule plus one photon, of energy Vg(q) + ωc. The coupling to the electronic
part is introduced within the RWA (see the discussion of the Tavis–Cummings model
in section 2.3), such that the total number of electronic and photonic excitations is con-
served, but leads to incorrect results when treating the ultrastrong-coupling regime. The

85



4 Theory of polaritonic chemistry

relevant electronic–photonic Hamiltonian becomes

Ĥe−ph(q) = Vg(q) + V ′e (q)σ̂†σ̂ + ωcâ
†â+ E1ph · µeg(q)

(
â†σ̂ + σ̂†â

)
, (4.5)

where V ′e (q) = Ve(q) − Vg(q) is the position-resolved energy difference between ground-
and excited-state PESs, σ̂ = |g〉〈e| is the molecular electronic transition operator, ωc
the photon frequency, and â the bosonic ladder operator associated to the photon. The
exciton–photon interaction is determined by the single-photon electric field amplitude
E1ph and the configuration-dependent electronic transition dipole moment µeg(q) be-
tween ground and excited states. It should be noted that the permanent dipole moments
are also omitted, and thus Eq. (4.5) is very similar to the Jaynes–Cummings Hamiltonian.
Diagonalization of Ĥe−ph(q) yields the set of adiabatic PoPES of the strongly-coupled
system.
When the coupling is negligible (Fig. 4.1a), two clearly distinguishable PES exist in

the single-excitation subspace: the molecular exciton, characterized by the excitonic PES
(orange line), and the state corresponding to a single cavity photon, with the molecule
in its ground state (thus the PES inherits the ground-state like behavior with a shift
up the photon energy, ωc, purple line). Throughout most of the plots in this thesis that
feature PoPES, we codify the mixed light–matter character in a color scale that measures
the photon component nph = 〈â†â〉, spanning from orange (bare exciton) through light
gray (polariton) to purple (bare photon). We can see this in Fig. 4.1b,c, where the Rabi
splitting is increased, thus showing a modification in the energy landscape, as discussed
in the previous chapter.
Let us now address the role of dissipative processes in polaritonic chemistry. Organic

molecules coupled with light modes present different mechanisms of decay and dephas-
ing. The decay processes associated with the cavity are often very fast, showing in most
current experiments typical lifetimes on the order of tens to hundreds of femtoseconds
[37, 38, 108, 266, 267], to tens of picoseconds for the case of high-Q cavities such as Fabry–
Perot or photonic crystal cavities [48, 268]. Regarding the molecular part, the dissipative
processes emerge from inter- and intra-molecular vibrational relaxation, i.e., interactions
with all the DoF of the molecule itself and the molecular environment. These processes
can in principle be described within the framework of PoPES, since the phenomena of
nuclear relaxation, dephasing, and nonradiative decays take place on the PES of the
molecule, and can thus be included. As an example, in [168] the molecule is treated fully
with all relevant nuclear degrees of freedom and the solvent molecules are represented
through molecular mechanics. An additional decay channel that molecules present is the
free space radiative decay, determined by Fermi’s golden rule (see section 2.2), which
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leads to typical lifetimes of the order of nanoseconds. Throughout this thesis, we neglect
dissipative processes in our theoretical treatment, and only discuss their overall effects
on polaritonic chemistry when studying particular scenarios (see e.g., chapter 6). How-
ever, a more detailed treatment of dissipation will certainly be beneficial to a complete
understanding of the experimental implementations of polaritonic chemistry.

4.3. Collective phenomena: the supermolecule
Here we analyze the effects found when strong coupling is achieved through collective
coupling, i.e., the coherent interaction of many molecules with the same light mode.
As already discussed, this leads to an electronic–photonic Hamiltonian that depends
parametrically on q = (R1,R2, . . . ,RN), i.e., on the nuclear degrees of freedom of all in-
volved molecules. This property is inherited by the resulting PoPES after diagonalization
of Ĥe−ph(q), implying that the effective indirect intermolecular interaction through the
photonic mode could lead to novel correlations between the nuclei of different molecules.
Indeed, this has been analyzed in detail in section 3.3 for the case of two molecules,
presenting remarkable correlations even in the dark states. We can thus understand
collective strong coupling in organic molecules as leading to the formation of a “super-
molecule” spanning all coupled molecules. As we discuss in this section, this offers a
range of new phenomena that further enhance our ability to control the dynamics and
chemistry of a molecular ensemble.

Let us again assume that the molecules are described by only two electronic states,
and in addition we take all molecules to be coupled equally to the photonic mode. The
Hamiltonian is then a straightforward extension of Eq. (4.5) to include sums over all the
molecules. The associate Hilbert space of such Hamiltonian becomes rapidly unmanage-
able. In order to treat such a large number of states in the standard TC model we define
collective operators (see section 2.3). This was possible because the emitters where con-
sidered to have the same energy. However, in the picture of PoPES each molecule has a
unique configuration with its associated energy. Nevertheless, we can focus our study to
cuts of the Hilbert space where groups of molecules share the same configuration, thus
making those sets of molecules indistinguishable. For each of these groups we introduce
the different collective spin operators

Ŝ†α =
Nα∑
iα=1

σ̂†iα and Ŝα =
Nα∑
iα=1

σ̂iα , (4.6)

where σ̂i is the usual single-emitter operator used in Eq. (4.5) and α labels groups
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of molecules with the same configuration Riα ≡ Rα, such that
∑

αNα = N . These
correspond to spin-Nα/2 operators so for a group with Nα = 1 we recover the single-
emitter operator σ̂i [243]. By including sums over the groups of “identical” molecules we
get the Hamiltonian

Ĥe−ph(q) = VG(q) +
∑
α

V ′e (Rα)n̂α + ωcâ
†â+ E1ph ·

∑
α

µeg(Rα)
(
â†Ŝα + âŜ†α

)
(4.7)

where VG(q) =
∑N

i Vg(Ri) is the overall ground state of the system, and n̂α = Ŝzα +

Nα/2 is the excitation number operator for the group α (with Ŝzα =
∑Nα

iα=1 σ̂
z
iα the z-

component of the collective spin operator). Since the Hamiltonian now contains only
collective molecular operators, the electronic–photonic states can be expressed in the
collective spin basis n̂α|nα〉 = nα|nα〉. Here it is more convenient to use nα = mα +Nα/2

as the quantum number, instead of the usual mα, which is the z-component of the spin,
since nα relates to a relevant physical quantity in our system: the excitation number.
This reduces the size of the Hilbert space from growing with the number of molecules
N , to growing with the number of groups of molecules with the same configuration. In
the following it will become apparent why this can significantly reduce the size of the
Hilbert space.

4.3.1. Collective protection
We now use Eq. (4.7) to study a collection of molecules, modeled through the simple
bound and dissociative PESs depicted in Fig. 4.1. Again we restrict ourselves to the
single-excitation subspace and diagonalize the electronic–photonic Hamiltonian for dif-
ferent cuts of the full Hilbert space. We start by exploring the two-dimensional subspace
determined by restricting N − 2 molecules to their equilibrium position qeq (minimum
of bound ground state PES Vg(q)). The corresponding lowest excited PoPES for N = 50

is represented in Fig. 4.2a, for a collective Rabi splitting ΩR = 0.3 eV. By inspecting
this surface we can see that it does not correspond to a simple sum of independent
single-particle potentials VLP(q1, q2, . . . ) =

∑
i Vi(qi), which confirms our previous pre-

sumption that strong coupling implies some correlation between nuclear motion of differ-
ent molecules, as we have seen in section 3.3. Furthermore, the choice of this particular
two-dimensional cut reveals a general feature that aids in the analysis of even higher-
dimensional PoPESs, where the choice of subspace is less restrictive. While motion of
a single molecule at a time (dashed yellow lines) shows a small barrier towards disso-
ciation, motion of two molecules at the same time (dashed diagonal green line) results
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Figure 4.2: Collective energy landscape in the single-excitation subspace. (a) Lowest excited
two-dimension PoPES for motion of two molecules of of N = 50 molecules. (b) Lowest excited
PoPES for correlatesd simultaneous motion of n = 1, . . . , 5 molecules (for the N−n reamaining
molecules in the equilibrium position, with N = 50). (c,d) Full PoPES for motion of one
molecule for the case of (c) N = 5 molecules and (d) N = 50 molecules, with identical color
code to those in Fig. 4.1.

in a high potential energy barrier, making motion of one molecule at a time the most
probable scenario. We can see in Fig. 4.2b how this behavior is general for simultaneous
motion of two, three, or more molecules. Here, we diagonalize again Eq. (4.7) in two
different groups: one of n molecules simultaneously moving (i.e., they all have the same
configuration at all times), and other with N − n molecules in the equilibrium position
qeq. We see that the energy barrier for simultaneous motion quickly increases with the
number of comoving molecules.

This phenomena can be understood easily: there is only a single excitation in the
system, which has to be “shared” among N molecules and one cavity mode, i.e., it is
coherently distributed over N + 1 different states. In the uncoupled system, motion for
all but one state proceeds along a ground-state-like surface, introducing a barrier for
deviations from the equilibrium position. This feature is necessarily reflected also in
the PoPES, where motion of several molecules at a time is strongly suppressed. This
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phenomena will arise in most typical molecules with locally stable ground states, where
motion on the lowest PoPES after photon excitation will proceed mostly along the
nuclear coordinate of a single molecule, significantly simplifying the analysis.
We can thus turn our discussion to the full excited-state spectrum, with motion re-

stricted to a single molecule. The uncoupled excited-state PES then consist of N surfaces
that follow the ground-state PES along q1 (the photonically excited PES and N − 1 sur-
faces where a molecule at the equilibrium position is excited), as well as one surface
where the moving molecule is excited and the PES thus follows Ve(q1). In Fig. 4.2c,d,
the resulting PoPESs are shown for N = 5 and N = 50 molecules, respectively, while
keeping the Rabi frequency fixed. Note that here the Rabi splitting is defined follow-
ing Eq. (3.14) for the case of aligned molecules considered here. Therefore, changing
the number of molecules while fixing ΩR corresponds to a change of the effective mode
volume (i.e., the single-photon electric field E1ph) for a constant molecular density. The
curves in Fig. 4.2c,d follow the same color code as in Fig. 4.1, indicating the photon
fraction and thus the excitonic/polaritonic/photonic nature of each PoPES. The polari-
tonic parts (in light gray) approximately follow the shape of the ground-state PES. This
provides the system some kind of collective protection effect, in which after photoexci-
tation the system now presents a more ground-state-like energy landscape due to the
collective coupling of all molecules. This effect can be understood as a generalization to
arbitrary PES of the so-called “polaron decoupling” found in Holstein–Tavis–Cummings
models [145, 156, 246], where the nuclear DoF are treated as pure harmonic oscillators.
This effect is analogous to phenomena in J- and H-aggregates, where an excitation is
distributed over many molecules not due to coupling with a confined light mode but
due to direct intermolecular interactions [269]. As in molecular aggregates, the similarity
between the ground-state PES and the lowest excited PoPES also implies that optical
transitions lineshapes should be significantly narrower compared to a bare molecule, due
to the fact that the Franck–Condon factors become approximately diagonal (see sec-
tion 2.2) if the excited PoPES is ground-state-like in a large enough region around the
equilibrium position.
The collective protection effect leads to nuclear motion on the PoPES of the single ex-

citation subspace to have mostly the energy dependence of the molecular ground state.
This consideration suggest some general design principles in polaritonic chemistry for
obtaining a desired functionality by appropriately tailoring the cavity-molecule interac-
tion. In particular, the excited-state PoPES can be obtained by “cutting and pasting”
ground-state-like (polaritonic) parts of the surface together with exciton-like parts, with
the details determined by the coupling strength and photonic mode frequency in ad-
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dition to the bare-molecule structure. In chapter 5 we will illustrate this principle of
taking advantage of the collective protection effect to achieve different novel phenomena
in organic photochemical reactions.

4.3.2. Polaritonic nonadiabatic phenomena
In section 3.2 we discussed the nonadiabatic corrections that are introduced in strong
coupling for the case of a single molecule. Let us now discuss this for the case of many
molecules in strong coupling. We again disregard the nonadiabatic effects present in the
molecule before coupling to the cavity. As discussed in section 2.2, these effects become
important when two PESs get close in energy or even degenerate at certain nuclear
configurations, which leads to an increase or divergence of the nonadiabatic coupling
vector. In the following we study the instances when this take place: avoided crossings
and conical intersections.

Avoided crossings

In the full energy landscape of Fig. 4.2c,d we can see an avoided crossing between a
purely excitonic PES and a polaritonic one for slightly smaller or larger values of the
equilibrium position q1 = qeq. This avoided crossing is clearly seen to become much
sharper as the number of molecules is increased. By looking at the lowest excited PoPES,
the crossing at q1 = qcross occurs due to the excited molecule moving sufficiently to fall
out of resonance with the photonic mode and thus starts following the uncoupled single
molecule PES (exciton-like orange line). Therefore, in the case of q1 > qcross the PoPES
in light gray correspond to coupling between the photonic mode and N − 1 molecules,
while in q1 = qeq the polariton is formed with all N molecules. Using a diabatic basis
based on these ingredients, i.e., the N polaritonic surfaces that arise from the N − 1

ground-state molecules plus the photon and the moving excited molecule, reveals that
the effective coupling between these PoPES becomes proportional to the single molecule–
photon coupling, which scales as∼ N−1/2 for our scenario of the collective Rabi frequency
being independent of N . This reduction in coupling can be understood as the distributed
excitation having to collapse onto a single molecule as we go over qcross, or equivalently
by interpreting the polariton involving the N − 1 other molecules as simply a shifted
photonic mode coupling to the single-molecule exciton at this position. It should be noted
that this reduction is a direct consequence of the collective protection in the system and
that further contributes to the molecular stabilization to purely polaritonic states. In
our current picture, the uncoupled molecule would immediately tend to dissociate after
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Figure 4.3: Zoom on the collective light-induced conical intersection between dark-state
PoPESs under motion of two molecules.

photoabsorption. However, in strong coupling with a very large collection of molecules the
coupling between the excited purely polaritonic diabatic PES and the diabatic uncoupled
molecular PES goes to zero as N → ∞, thus making the transition between diabatic
PES highly unlikely. In terms of adiabatic surfaces, the nonadiabatic coupling between
the two lowest excited PES at q1 = qcross is so great that an excited wavepacket will very
efficiently transfer between the two so that population does not reach the dissociating
region of the PES.

Dark-state collective conical intersections

Let us now focus in more detail in the mostly excitonic regions of the energy landscape
close to the bare-molecule excitation energy at equilibrium (see black box in inset of
Fig. 4.3). When all molecules are in the same configuration there are N−1 so-called “dark
states” (see TC model discussion in section 2.3). In a picture of potential energy surfaces,
this means that exactly at this configuration N − 1 PoPESs become degenerate. Motion
of any degree of freedom (i.e., nuclear motion of any molecule) lift these degeneracies.
This can be seen in Fig. 4.3, which corresponds to a zoom of the crossing dark state
surfaces for motion of two different molecules. Here, the two sloped surfaces (green and
red) roughly correspond to motion of the uncoupled single-molecule excited PES of each
of the two molecules, while the orange horizontal surface actually corresponds to the
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remaining N − 3 dark PESs, which are completely degenerate for all q1, q2 (remember
that here we focus on the subspace of restricted motion for N − 2 molecules). Along the
seams where this surface intersect the sloped surfaces, N − 2 surfaces are degenerate.
This seams (continuous black lines) correspond to either molecule at q = qeq of collective
resonance. The structure discussed here thus gives rise to a high-dimensional hierarchy
of hyperdimensional surfaces where between 2 and N − 1 PoPESs become degenerate,
i.e., conical intersection seams of different dimensionality [192, 193, 270, 271].

Here it should be noted that these intersections do not correspond simply to inter-
sections of completely decoupled surfaces, but that they actually show nonzero coupling
away from the point of intersection (see along the diagonal q1 = q2, where outside qeq the
small coupling lifts the degeneracy between the red and green surfaces). This interaction
is due to the cavity, as the approximate dark states are not completely dark anymore
if the perfect degeneracy between emitters is lifted. At the same time, the very small
coupling to the cavity implies that the resultant electronic–photonic states are almost
purely excitonic and thus their intrinsic linewidth is essentially equal to the one of the
bare molecule.

One particularly interesting detail here is that these are collective conical intersections,
as they describe nuclear motion of different, possibly spatially separated molecules. This
further validates the concept of a “supermolecule” formed from all molecules through
collective strong coupling, being this new kind of conical intersection another example
of nontrivial collective effects. Note that the occurrence of this structure is quite robust
against inhomogeneous broadening, i.e., shifts of the transition energies of the different
molecules. This just leads to slight shifts of the nuclear positions where the different
molecular PESs become degenerate and form the conical intersections, but does not de-
stroy their topological properties. In a recent analysis of the dynamics through collective
conical intersections [272] it has been demonstrated that these have an important role in
the non-radiative energy relaxation rates upper and lower PoPESs, being this governed
by the number of coupled molecules [127, 150, 265].

4.4. Conclusions
In this chapter we presented an overview of the theory of polaritonic chemistry under
strong light–matter coupling based on the picture of PoPES, which generalize the con-
cept of PES to hybrid electron–photon surfaces with a parametric nuclear dependence.
In the case of collective strong coupling, more common in experiments, we show the gen-
eral properties of “collective protection”, which lead to PoPESs that can be understood
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from a principle of “cut and paste” operations combining ground-state-like with exciton-
like surfaces. This implies a wide range of freedom for the design of customized PESs
that can describe the desired processes. This allows the transformation of the surfaces
that govern different photophysical and photochemical phenomena in order to manipu-
late the resulting product. We here illustrated these concepts using a common energy
landscape modeling a chemical scenario of bond dissociation, for the case of coupling
to a cavity mode of a single molecule and of a collection of molecules. In the simplest
single-molecule scenario we discussed the underlying theory and the consequences of
light–matter hybridization in molecules. In the more complex case of collective strong
coupling we present a method to study collective effects with a large number of molecules.
Furthermore, we demonstrated a high-dimensional nested structure of collective conical
intersection with varying amount of degeneracy induced in the dark states of the system.
In the following chapter we present a couple of examples more in order to show the wide
variety of possibilities for manipulation of photochemistry that the PoPESs offer.

The PoPES picture opens the possibility of a straightforward interface to existing quan-
tum chemistry methods. With this approach we can make physical predictions of how
the energy landscape is altered in realistic strong coupling systems by previously calcu-
lating the molecular information with any current available quantum chemistry packages
such as Therachem [273, 274]. The bare-molecule structure can then be calculated at
each nuclear configuration for each molecule separately. Then, it is possible to treat the
light–matter coupling within a small Hamiltonian involving only a few relevant states
per molecule, similar to that in existing excitonic models [275, 276]. For the PoPES ap-
proach, this effective decoupling between the “chemical” and “quantum optical” parts of
the calculation allows the use of well-known approaches such as QM/MM (quantum me-
chanics/molecular mechanics) for treating big molecular systems. Here, nuclear motion
on the PoPESs is treated classically, with nonadiabatic couplings introduced through
surface hopping algorithms. The clear parallelizability of this approach has allowed the
treatment of up to 1600 rhodamine molecules (within the single-excitation subspace) and
their surrounding solvent, corresponding to to 43 200 QM and 17 700 800 MM atoms in
total [168].
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photochemistry

5.1. Introduction
The possibility of manipulating photochemical reactions exploiting strong light–matter
coupling, as demonstrated in several experiments [136, 141, 172], holds great interest
for many different fields of science. In this chapter we apply the theory developed in
previous chapters in order to understand and predict different chemical changes in or-
ganic photochemistry. We treat two different molecular models that represent typical
simple photoisomerization reactions. In section 5.2 we discuss the possibility of taking
advantage of the collective protection effect introduced in section 4.3 in order to suppress
photoisomerization reactions. We study the single-molecule dynamics in strong coupling
and the decrease of the reaction rate with the number of molecules. We then investigate
the system with two excitations and discuss its effect on the reaction suppression and
the connection to polariton–polariton interactions. Then, in section 5.3 we demonstrate
the possibility of engineering the PoPES to achieve novel reaction pathways by properly
tuning the system in strong coupling. We show how it is possible to increase the quantum
yield of a photochemical reaction, and even overcome the second law of photochemistry
in the case of many molecules.

5.2. Suppressing photochemical reactions
An organic molecule can undergo an structural change after absorption of a photon.
This process is known as photoisomerization, a mechanism of great importance in many
biological systems such as the human eye [277]. It presents plenty of possible techno-
logical applications in solar energy storage [278] and as optical switches, memories, and
actuators [279, 280]. However, it can also have detrimental effects, such as limiting the
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efficiency of organic solar cells [281] or opening important damage pathways in DNA un-
der solar radiation [282, 283]. While sometimes these effects can be avoided by shielding
the system from light, this is not a viable pathway when the system precisely relies on
the interaction with external light, such as in the case of solar cells.
In this section we will show that it is possible to suppress photoisomerization by

strongly coupling the relevant molecules to confined light modes. The photochemical
process is governed by the excited state PES, which is modified under strong coupling,
thus influencing the dynamics that lead to structural changes. The PoPES that controls
the reaction develops a new minima in which the excited wavepackets are trapped after
photoabsorption. We observe the dynamics in the single-molecule scenario, and then we
discuss how we can exploit the collective protection effect presented in section 4.3 in
order to enhance the suppression of the reaction.
We treat a general molecular model that can represent a variety of commonly studied

photoisomerization reactions, such as cis-trans isomerization of stilbene, azobenzene or
rhodopsin [277, 284, 285] (corresponding to rotation around a C=C or N=N double bond,
as sketched in Fig. 5.1a), or ring-opening and ring-closing reactions in diarylethenes [279].
The model molecule describes nuclear motion on ground and excited electronic PES along
a single reaction coordinate q.
The adiabatic electronic PESs of the bare molecule are constructed in terms of diabatic

surfaces VA(q) and VB(q), shown in Fig. 5.1b, which are coupled to each other with a
small coupling h0 = 0.02 eV assumed constant in space. This gives the following electronic
Hamiltonian:

Ĥe(q) =

(
VA(q) h0

h0 VB(q)

)
. (5.1)

Diagonalization of Ĥel(q) returns the ground and excited state PES of Fig. 5.1c, Vg(q)

and Ve(q), together with the adiabatic electronic wavefunctions. This also gives access
to the nonadiabatic coupling that controls the transition between ground and excited
surfaces at q ≈ 0 (see Fig. 5.1e), given by Fi,j(q) = 〈i(q)| ∂q |j(q)〉, where i, j ∈ {e, g} and
|i(q)〉 represent the adiabatic electronic states. We note that nonadiabatic transitions in
“real” molecules typically involve conical intersections (see the corresponding discussion
in section 2.2), which only occur in multi-dimensional systems; however, the details of
this transition do not influence the results presented.
We take into account only one DoF, while all the others are assumed to be fully relaxed

such that the excited PES represents the minimum energy path that governs the reaction
(see section 2.2). The ground state PES, Vg(q) (blue line), possesses minima at q = q0 ≈
−1.05 a.u. and q ≈ 1 a.u., corresponding to the stable (e.g., trans-) and metastable (e.g.,
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Figure 5.1: (a) Sketch of the cis-trans isomerization reaction of stilbene. (b) Diabatic and (c)
adiabatic PES for the model molecule. (d) Constant coupling between the diabatic surfaces. (e)
Nonadiabatic coupling at q ≈ 0 between adiabatic surfaces Vg(q) and Ve(q).

cis-) isomers, respectively. They are separated by a barrier with a maximum at q ≈ 0

accompanied by an avoided crossing between the ground and excited state PES, Ve(q)

(orange line). In order to ensure a large quantum yield for photoisomerization in the
bare molecule, we choose a very narrow avoided crossing (with energy splitting 39 meV,
smaller than the width of the lines in Fig. 5.1c).

Besides the bare-molecule PESs, we need to set the molecular dipole moment operator
µ̂, which determines the coupling to the quantized light mode and the absorption of the
system. For simplicity we set µ̂ to be purely offdiagonal in the adiabatic basis, i.e., µgg =

µee = 0. The ground-excited transition dipole moment µeg is approximately constant
close to the stable geometries, but changes rapidly close to the nonadiabatic transition
due to the sudden polarization effect [286]. We thus choose |µeg(q)| ∝ arctan(q/qm), with
qm = 0.625 representing the length scale on which µeg(q) changes. As discussed below,

97



5 Manipulating photochemistry

the specific shape of µeg(q) does not strongly affect the results presented here.
Therefore the complete molecular Hamiltonian is then given by

Ĥmol(q) =
P̂ 2

2Mq

+ V̂ (q) + Λ̂(q), (5.2)

where P̂ is the (diagonal) nuclear momentum operator, Mq is the effective mass for the
nuclear coordinate q, V̂ (q) is the (diagonal) potential operator in the adiabatic basis,
and Λ̂(q) is the operator of offdiagonal (nonadiabatic) couplings as defined in Eq. (2.32).

5.2.1. Single molecule dynamics
In order to study the dynamics, we need to calculate the population evolution both in
the uncoupled and in the strongly coupled systems by solving the Schrödinger equation
i∂t|ψ(t)〉 = Ĥtot|ψ(t)〉, where Ĥtot is the total Hamiltonian without invoking the Born–
Oppenheimer approximation, i.e., including all nonadiabatic terms, both in the coupled
and uncoupled case. We use a finite-element discrete variable representation [287, 288]
for the nuclear coordinate q, as well as a Fock basis for the cavity photon mode. Note
that in the strong coupling regime the nonadiabatic couplings in the polaritonic basis
are given by new terms Λ̂SC due to the change of basis, as well as the original bare-
molecule nonadiabatic couplings Λ̂(q) transformed to the new eigenstate basis. The initial
wavefunction is given by direct promotion of the ground-state nuclear wavepacket to the
lowest excited state (i.e., |e〉 for no coupling and |LP〉 under strong coupling), filtered by
the q-dependent transition dipole moment µeg. This approximately corresponds to the
initial state that would be obtained after excitation by an ultrashort laser pulse tuned
to the excited state energy around the nuclear equilibrium position.
In Fig. 5.2a,d we show the population transfer from the excited to the ground state

in the case of the uncoupled molecule. When the wavepacket encounters the avoided
crossing, it undergoes an efficient nonadiabatic transition (i.e., it follows the diabatic
surfaces, see Fig. 5.1b). In this scenario, the bare model molecule undergoes rapid pho-
toisomerization, with the nuclear wavepacket reaching the second isomer (q > 0) within
a few hundred fs.
In contrast, when the system enters strong coupling, photoisomerization in a single

molecule is suppressed. To show this, we rely on the theoretical framework we introduced
in chapter 4. The electron–photon Hamiltonian is given by

ĤSC = ωcâ
†â+ V̂ (q) + µ̂(q) · E1ph(â† + â), (5.3)
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Figure 5.2: Suppression of photoisomerization under strong coupling for a single molecule. (a-
c) Ground (blue) and excited (purple-orange color scale) potential energy surfaces of the model
molecule coupled to a quantized light mode (ωc = 2.65 eV), with the light-matter coupling
strength ΩR increasing from (a) to (c). The continuous color scale encodes the nature of the
hybridized excited PES. (d-f) Time propagation of the nuclear wavepacket after sudden excita-
tion to the lowest excited PES (lower polariton for ΩR > 0), shown separately for the parts in
the lower polariton surface (orange) and the ground state surface (blue) reached through the
nonadiabatic transition at q = 0. Contributions in the upper polariton surface are negligible
and not shown.

where ωc is the quantized light mode frequency, and E1ph is the electric field amplitude
of a single confined photon. Without the light–matter coupling term, the photonically
excited surface describes the motion of a ground-state molecule with an (uncoupled)
photon present in the cavity, and is thus simply a copy of the molecular ground state
shifted upwards by the photon energy, Vc(q) = Vg(q) + ωc (purple curve in Fig. 5.2a).
When coupling is turned on, PoPES are formed, presenting both photonic and excitonic
character (see Fig. 5.2b,c). The splitting between the PoPES around the equilibrium
(q0 ≈ −1.05 a.u.) is approximately equal to the Rabi frequency ΩR = 2µeg(q0) · E1ph.

Importantly, we observe in Fig. 5.2b,c that the lower PoPES develops a deeper and
deeper minimum as the coupling is increased. This has two primary reasons: first, the
light–matter coupling is most effective when Vc(q) and Ve(q) are close, “pushing down”
the lower polariton at the equilibrium position. At regions of larger detuning, the “po-
laritonic” PES are almost identical to the uncoupled ones. Second, the local shape of the
PoPES becomes a mixture of the two uncoupled PES in regions where they hybridize
significantly. Since the photonic surface Vc(q) behaves like the ground-state PES, this
additionally supports the formation of a local minimum in the PoPES. In combination,
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this leads to the formation of a reaction barrier against isomerization as the coupling
is increased. At intermediate coupling, where no barrier is formed yet, the reaction is
slowed down, but not suppressed (see Fig. 5.2b,e). Once the coupling becomes sufficiently
large, a barrier appears and the excited wavepacket is trapped in the local minimum,
such that isomerization becomes almost completely suppressed (see Fig. 5.2(c,f)). The
initial wavepacket on the lower polariton surface in our calculations is started by a
sudden transition and thus includes all vibrationally excited states that are reachable
from the ground state through a dipole transition. If the coherent excited wavepacket
is successfully trapped without undergoing ultrafast isomerization (as in Fig. 5.2(c,f)),
the ultimate fate of the molecule will be determined by two additional effects: on the
one hand, the excited wavepacket will thermalize within the lower PoPES on typical
timescales of picoseconds. While the exact values depend on the details of the system,
we note that for the model molecule treated here, the barrier height of ≈ 65 meV in
Fig. 5.2c is much larger than the thermal energy kBT ≈ 26 meV at room temperature,
preventing isomerization, according to transition state theory (TST, see section 2.2). On
the other hand, the excited-state wavepacket will simultaneously decay both by radiative
and nonradiative processes with timescales typically dominated by the photonic part of
the PoPES, ranging from tens of femtoseconds for plasmonic resonances to picoseconds
and longer for dielectric structures.
Note that while the upper PoPES appears even more stable than the lower one in

this model, this is an artifact of the restriction to one degree of freedom, with all other
degrees of freedom relaxed to their local minimum. This implies that the lower PoPES
indeed corresponds to the lowest-energy excited state, such that the restriction to one
coordinate is well-justified. In contrast, the upper polariton surface can possess efficient
relaxation pathways to the lower polariton along orthogonal degrees of freedom, and
indeed, upper polaritons are known to decay relatively quickly within the excited-state
subspace [289, 290].
We have thus shown that strong coupling of a single molecule to a confined light

mode can strongly suppress photoisomerization reactions and stabilize the molecule.
The experimental realization of single-molecule strong coupling [38] proves that this
could indeed be a viable pathway towards manipulation of single molecules. At the same
time, most experiments achieving strong coupling with organic molecules have exploited
collective coupling [37, 291], in which N � 1 molecules coherently interact with a single
mode, leading to an enhancement of the total Rabi frequency by a factor of

√
N (see

Eq. (3.14) and TC model).
As presented in section 4.3, when in collective strong coupling, the system will experi-
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(a) (b)

Figure 5.3: Many-molecule potential energy surfaces under strong coupling. (a) Lower polari-
ton PES for N = 50 molecules, under motion of molecules 1 and 2, with all others held in
the equilibrium position q0. (b) Energy reaction path corresponding to simultaneous motion
of several molecules. In both panels, the photonic mode frequency is ωc = 2.65 eV, while the
(collective) Rabi frequency is fixed to ΩC =

√
NΩR = 0.5 eV.

ence the collective protection effect. In this scenario it is not immediately clear whether
this will be detrimental or beneficial to the suppression of the reaction. As has recently
been shown, many observables corresponding to “internal” degrees of freedom of the
molecules are only affected by the single-molecule coupling strength and thus not strongly
modified under collective strong coupling [143, 292]. We therefore in the following explic-
itly check whether this suppression effect is “washed out” by the presence of the other
molecules by explicitly studying a collection of N molecules in strong coupling.

5.2.2. Collective suppression

In order to treat collective strong coupling involving N molecules and a single confined
light mode, we again restrict ourselves to the zero- and single-excitation subspace. As
we have seen in the theory section 4.3, the molecules now have N total nuclear degrees
of freedom, described by the vector q = (q1, . . . , qN), and the PES accordingly become
N -dimensional surfaces. Diagonalization of the full Hamiltonian of Eq. (4.4) gives N + 1

polaritonic surfaces, which describe the collective coupled motion of all molecules. In
principle, this could induce, e.g., collective transitions in which multiple molecules move
in concert, but an explicit analysis of all the nuclear DoF is computationally not feasible.
We therefore focus on the subspace of the full Hilbert space where many molecules share
the same configuration by using the collective spin operators defined in Eq. (4.6). As in
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(a) (b) (c)

Figure 5.4: Many-molecule potential energy surfaces under strong coupling. (a-c) All potential
energy surfaces under motion of only molecule 1, for no light-matter coupling (a), and under
strong coupling for N = 5 (b) and N = 50 (c) molecules. In all panels, the photonic mode
frequency is ωc = 2.65 eV, while the (collective) Rabi frequency is fixed to ΩC =

√
NΩR =

0.5 eV.

the previous chapter, we do it for motion of two molecules while keeping the remaining
N − 2 molecules in the equilibrium position (qj = q0 for j > 2), shown in Fig. 5.3a.
Again, we compute the energy profile for simultaneous motion of n = 1, . . . , 5 molecules,
shown in Fig. 5.3b. We see that the same arguments of section 4.3 are repeated, as the
collective protection effect makes that motion of more than one molecule takes place in
ground-state potential wells, i.e., along steep potential barriers.

We thus analyze the coupled states under motion of only the first molecule q1, fixing
all other molecules to the ground-state equilibrium position (qj = q0 for j > 1). The
corresponding surfaces are shown in Fig. 5.4. When the light–matter coupling is zero
(Fig. 5.4a), the surface V (1)

E (q) behaves like Ve(q1), while all other surfaces (correspond-
ing to photonic excitation, or excitation of a “stationary” molecule j > 1) appear like
copies of the ground-state PES Vg(q1) shifted in energy. The PoPES for varying num-
bers of molecules are shown in Fig. 5.3(b,c). We keep the total Rabi frequency constant
(corresponding to a scaling of the single-photon field strength with N−1/2). Close to
equilibrium (q1 ≈ q0), the N + 1 surfaces can be clearly classified into a lower and up-
per polaritonic PES (light gray), which show significant hybridization with the photonic
mode, as well as N − 1 “dark” surfaces (orange) that are almost purely excitonic.

As the number of molecules is increased the collective protection effect acquires more
relevance, and thus the local minimum of the lower PoPES (the lowest light gray surface)
close to the equilibrium position q0 becomes more and more reminiscent of the pure
ground-state PES. This introduces a set of changes to the landscape of excited states
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Figure 5.5: Energy barriers vs number of molecules for different values of Rabi splitting. The
right axis shows the equivalen lifetime predicted through transition-state theory.

that utterly transforms the dynamics of the system. The first consequence is that the
similarity of the ground and lower polariton PES for large N implies that the Franck–
Condon factors become approximately diagonal (i.e., µLP,g(q) ≈ µLP,g(q0) over the
width of the vibrational ground-state wavepacket, see section 4.3). Thus, transitions
from the overall ground state to vibrationally excited states in the lower PoPES become
more and more suppressed. Photoexcitation then cannot change the vibrational state,
such that the excited wavepacket will be close to its vibrational ground state. Note that
this occurs independent of the general shape of the single-molecule offdiagonal transition
dipole moment.

Additionaly, this likeness to the ground-state PES will also generate an energy barrier
to photoisomerization increasingly higher with the number of molecules. For the cases
shown in Fig. 5.4, the barrier height reaches ≈ 117 meV for N = 5 and ≈ 156 meV
for N = 50 molecules, well above the thermal energy at room temperature. Therefore,
after photoexcitation, a ground-state wavepacket can then thermalize (on typical time
scales of picoseconds at room temperature), with the lifetime for passing over the barrier
determined by the probability of gaining enough energy from the bath to overcome the
barrier. We can now obtain an estimate of the lifetime based on TST. This estimate
should be taken with some caution, as there are at least two features of the polaritonic
system considered here that differ from the situation treated by standard TST.

First of all, there is not just a single energetic barrier that has to be overcome, but one
for motion of every molecule with all N − 1 others close to equilibrium. This enhances
the probability of overcoming the barrier by a factor of N . However, in the diabatic
picture, the number of molecules also introduces a scaling of 1/N to the transition prob-
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ability at the avoided crossing (see isent in Fig. 5.4c) to the excitonic PES that leads
to photoisomerization. Therefore the two effects discussed approximately cancel each
other. We thus assume that TST provides a useful estimate of the excited-state lifetime1.
Under the condition that the photon frequency is fixed to stay close to resonance at
the equilibrium position, the barrier height in the lowest PoPES depends on two param-
eters: the Rabi frequency and the number of molecules. Their combined effect on the
energy barrier and the corresponding lifetime is shown in Fig. 5.5, which demonstrates
that increasing N leads to higher barriers, with the value saturating for a given Rabi
splitting. Alternatively, larger Rabi frequencies and the associated reduction in the min-
imum energy of the lowest PoPES lead to effectively higher barriers and thus a more
efficient suppression of the photoisomerization reaction. The associated lifetimes range
from about one picosecond to about 10 ns depending on parameters. The final fate of an
excited wavepacket will thus depend on the competition between two time scales: that
of the vibrational wavepacket trapped inside the local potential well in the lower PoPES,
as well as that of the polaritonic state against relaxation, which is typically dominated
by the photonic fraction of the polariton.

5.2.3. Beyond the single-excitation subspace

Up to now, we have only discussed the PoPES within the zero- and single-excitation
subspace. While this is the subspace probed under weak excitation (linear response) in
experiment, the nonlinear response of polaritonic systems is a topic of great current inter-
est. It becomes relevant in, among others, transient absorption measurements [136, 293],
nonlinear optics setups [113, 114, 240], and studies of polariton lasing and condensa-
tion [36, 98, 99, 108, 294]. We here focus on the two-excitation subspace and investigate
whether we still observe the collective protection effect and the resulting suppression
of the phosotoisomerization, and whether we observe any effective polariton–polariton
interactions leading to correlated motion. As in the rest of the section, we neglect direct
dipole–dipole interactions between the molecules, such that saturation is the only source
of nonlinearities or effective polariton–polariton interactions (as typically observed in
organic-based polaritonic systems due to the localized nature of Frenkel excitons [36]).
When the number of molecules is much larger than the number of excitations, it is ex-

1It should be noted that the lifetimes calculated here are an estimate, and a more precise calculation
would require to compute the formally exact quantum reaction rates as discussed in section 2.2 in
order to properly include effects such as tunneling or recrossings. This nevertheless does not strongly
affect the general suppression result.
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Figure 5.6: PoPES up to the two-excitation subspace for the treated model molecule, for
N = 50 molecules, photonic mode frequency ωc = 2.65 eV, and (collective) Rabi frequency
fixed to ΩC = 0.5 eV . The two color scales indicate the photon fraction in the single- and
two-excitation subspace, respectively.

pected that the system bosonizes, i.e., that the response becomes linear and polaritons
become approximately independent of each other [295]. However, nonlinearities can sur-
vive even for surprisingly large values of N under strong coupling conditions [256]. In
this case, the use of collective spin operators becomes essential for its computational
treatment, as it keeps the problem easily tractable even for relatively large numbers of
molecules (where a naive approach would scale with N2).

We now calculate the PoPES for up to two excitations with N = 50, shown in Fig. 5.6
for the region q1 . 0. The large number of surfaces seen in the two-excitation subspace
can be approximately qualified within an independent-particle picture (expected to be
exact in the limit N →∞), corresponding to, for example, excitation of 2 lower polari-
tons, or one lower and one upper polariton. The color scale within the two-excitation
subspace again measures the photonic contribution to each state, now spanning from
〈nph〉 = 0 (two excitons, dark orange) through dark gray (one exciton, one photon) to
〈nph〉 = 2 (two photons, dark purple).

In the following, we will focus on the lowest PoPES within the two-excitation mani-
fold, which we label as V2LP(q1, q2, . . . , qN) as it corresponds approximately to two lower
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Figure 5.7: (a,b) Comparison of the PoPES in the double-excitation subspace for motion
of one molecule (red line) and two molecules (green line), and twice the lower PoPES in the
single-excitation subspace for motion of one molecule (orange dashed line), for N = 5 and
N = 100 coupled molecules, respectively. (c) Dependence of the energy barrier for double
photoisomerization with the number of molecules for the reaction paths corresponding to the
PoPES in (a,b).

polaritons close to equilibrium. Note that for the two-state molecules considered here,
isomerization after double excitation (i.e., after absorption of two photons) in the un-
coupled system corresponds to two independent excitons on separate molecules, with
motion proceeding on the surface V2e(q1, q2) = Ve(q1) + Ve(q2). This implies that, in con-
trast to the single-excitation subspace, concerted motion of two molecules (e.g., along
q1 = q2) is not a priori suppressed under strong coupling. In the limit N → ∞, the
lowest surface should again support independent motion, but now on polaritonic sur-
faces. Consequently, a cut where only two molecules move should approximately fulfill
V2LP(q1, q2, q0, . . . , q0) ≈ VLP(q1) + VLP(q2).

This is studied in Fig. 5.7, which shows two cuts through V2LP, one in which only q1 is
varied (red solid line) and one in which q1 = q2 are varied together (green solid line). In
addition, it shows the independent-particle limit of 2VLP(q1) (dashed yellow line). In all
three cases, all remaining molecules are fixed to the equilibrium position. The plots are
restricted to the region of interest q . −0.5 a.u., with subplots showing the cases N = 5

(a) and N = 100 (b). For the case of N = 5 molecules, it is clearly visible that simul-
taneous motion of two molecules has a slightly lower barrier than would be expected in
the independent-particle limit due to a noticeable blueshift around the equilibrium po-
sition, indicating effective polariton–polariton interactions. These differences disappear
for large enough N and are barely visible for the case N = 100 shown in Fig. 5.7b.

In order to clearly distinguish whether simultaneous motion of several molecules is
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favored compared to the independent-particle limit, we now directly compare the bar-
rier heights for two-molecule reactions for the different cases studied here in Fig. 5.7c.
Each line corresponds to the same case in Fig. 5.7a,b, with the difference that the en-
ergy barrier ∆E for motion of one molecule in the two-excitation subspace has been
multiplied by 2 for the sake of comparison. As expected, all correlations disappear for
large numbers of molecules, with the barrier heights converging to the same value. How-
ever, even for a considerable number of molecules such as N = 100 the correlations
are non-negligible (remember that transition rates approximately depend exponentially
on barrier height, according to TST), suggesting that polaritonic chemistry could pos-
sess subtle non-bosonic response even for mesoscopic numbers of molecules, similarly as
recently found for photon correlations [256, 296]. In particular, for the model studied
here, the barrier for simultaneous motion of two molecules after double excitation of
the system V2LP(q1, q2) is slightly smaller than expected from an independent-particle
model (2VLP(q1)). Interestingly, motion of just a single molecule in the two-excitation
subspace is even less suppressed, with the barrier consistently less than twice as high. It
should be noted that the subtle effects found for the specific model discussed here will
of course be challenging to measure experimentally, but they could point a way towards
more pronounced polariton–polariton interaction effects in polaritonic chemistry.

5.3. Enhancing photochemistry
We now focus on one particular characteristic of photochemistry: the so-called Stark–
Einstein law, which states that “one quantum of light is absorbed per molecule of absorb-
ing and reacting substance” [297]. This means that the quantum yield φ =

Nprod

Nphot
of the

reaction, which describes the percentage of molecules that end up in the desired reaction
product per absorbed photon, has a maximum value of 1. This limit can be overcome
in some specific cases, such as in photochemically induced chain reactions [298–300],
or in systems that support singlet fission to create multiple triplet excitons (and thus
electron-hole pairs) in solar cells [166, 167].

In this section we demonstrate a novel and efficient approach to circumvent the second
law of photochemistry, based on exploiting the collective nature of the new eigenstates of
a collection of molecules strongly coupled to confined light modes. This can allow many
molecules to undergo a photochemical reaction after excitation with just a single photon,
thus achieving an effective quantum yield larger than 1. This obviously cannot lead
to a violation of conservation of energy, therefore we investigate a class of exothermic
reactions that release energy, i.e., where the initial state before photoabsorption has
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Figure 5.8: Potential energy surfaces of a molecule presenting a general photoisomerization
reaction where one isomer has higher energy than the other, both of them with roughly equal
reaction quantum yield after absorption of a photon.

higher energy than the final state after the reaction has concluded. We focus on a class
of model molecules with a structure as proposed for use in solar energy storage [278, 301,
302], again described within a simplified model treating a single reaction coordinate, as
shown in Fig. 5.8.

In the model molecule, the PES associated with the electronic ground state contains
two local minima: a stable ground-state configuration (at q = qs ≈ 0.8 a.u.) and a
metastable configuration (at q = qms ≈ −0.7 a.u.) that contains a stored energy of about
1 eV. The activation barrier for thermal relaxation from the metastable configuration
to the global minimum has a height of more than 1 eV, leading to a lifetime on the
order of days or even years for the metastable configuration according to transition
state theory, and thus making it interesting for solar energy storage. In addition, the
molecule possesses an excited state PES with a relatively flat minimum close to the
ground transition state.

Let us first describe the molecular model in more detail. The two adiabatic PES
(ground state and first excited state) of the single bare molecule are both constructed
independently from two coupled harmonic potentials as follows:

Vi(q) =
1

2

(
vi(q) + wi(q)−

√
4h2

i + [vi(q)− wi(q)]2
)
, (5.4)
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Table 5.1: Molecular model parameters

Ei (eV) Ai (eV/a2
0) qi (a0) hi (eV)

vg 1.34 5.0 -0.75
2.0

wg 0.29 5.0 0.85
ve 11.65 5.0 -1.15

14.0
we 10.15 4.0 1.25

where i ∈ {g, e} indicates either the ground state or excited state PES and with

vi(q) = E
(v)
i + A

(v)
i

(
q − q(v)

i

)2

, (5.5a)

wi(q) = E
(w)
i + A

(w)
i

(
q − q(w)

i

)2

. (5.5b)

Each of the PES (ground and excited state) is then described by 7 parameters, 3 each
for vi(q) and wi(q), as well as a coupling hi. Their values are given in Table 5.1. While
there is a relatively large number of free parameters that control the molecular structure,
we have checked that the results presented below are insensitive to small variations as
long as the general shape of the PES is maintained.

In addition to the PES themselves, the properties of the strongly coupled light–matter
system depend on the transition dipole moment µeg(q) = 〈e(q)|µ̂|g(q)〉 between the
ground and excited state, which determines the coupling strength to the photon mode.
As discussed in the previous section, the q-dependence of the transition dipole moment
is typically relatively smooth close to local minima, but can change rapidly close to
regions of strong nonadiabaticity, which are absent in the current model. Furthermore,
as we have seen in the previous section, the collective protection effect ensures that the
effective transition dipole moment between the ground state and hybridized parts of the
excited polaritonic PES becomes almost independent of q for N � 1 for motion of one
molecule. For simplicity, we therefore use a q-independent µeg(q) in this section.
We finally discuss the decay of an isolated molecule to the ground state after exci-

tation, which determines the bare-molecule quantum yields. For simplicity, we assume
that the excitation decays purely radiatively, implying that nonadiabatic effects in the
bare molecule are negligible. The fluorescence quantum yield γr/(γr + γnr) is then close
to 1, where γr (γnr) is the radiative (nonradiative) decay rate from the excited state.
Furthermore, since radiative lifetimes are much longer than vibrational relaxation, we
can assume that the wavepacket in the excited PES has reached thermal equilibrium be-
fore fluorescence. We can thus approximate the associated wavepacket by the vibrational
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ground state χ(0)
e (q), obtained by diagonalizing the adiabatic Hamiltonian P̂ 2

2Mq
+ Ve(q),

where P̂ = −i ∂
∂q

is the nuclear momentum operator and Mq = 550 Da is the effective
mass. Radiative decay is then modeled as a vertical transition within the Franck–Condon
approximation, such that only the electronic state changes and the ground-state nuclear
wavepacket immediately after decay is just a copy of the vibrational ground state in the
excited-state PES, χg(q, t = 0) ∝ χ

(0)
e (q). The time evolution of this wavepacket on the

ground-state PES thus follows the Schrödinger equation. We then analyze the probabil-
ity (corresponding to the quantum yield) of finding the wavepacket in each isomer after a
time tf ≈ 160 fs in which it has completely moved away from its initial configuration due
to coherent motion. The quantum yield is then given by φiso =

∫
iso
|Ψ(q, tf)|2dq, where

iso ∈ {A,B} labels the isomer regions to the left and right of the energy barrier in Vg(q).
This gives a roughly equal reaction quantum yield for reaching either the stable (44%) or
the metastable configuration (56%). As expected in a conventional photochemical reac-
tion, the quantum yields in the bare molecule add up to one (indeed, the Stark-Einstein
law can be reformulated as “the sum of quantum yields must be unity”).
We note that the condition of high fluorescence quantum yield is not strictly necessary

for the many-molecule reaction effects discussed below to take place. The important
requirement is that the excited-state lifetime is sufficiently long, which precludes conical
intersections between the ground and excited PES along or close to the reaction path.
However, many molecules possess sloped conical intersections located at a higher energy
along a nuclear coordinate orthogonal to q [193], where it is not easily reachable by
the excited-state nuclear wavepacket. The associated bare-molecule nonradiative decay
could be faster than radiative decay (which has typical timescales of nanoseconds), but
would still be slow enough to allow the many-molecule reactions discussed here to take
place. For simplicity, and to avoid having to introduce additional assumptions about the
PES structure in directions orthogonal to the reaction coordinate q, we assume purely
radiative decay in our calculations.

5.3.1. Single molecule quantum yield increase
We now consider a collection of these molecules placed inside a photonic structure sup-
porting a single confined light mode. For simplicity, we assume perfect alignment between
the molecular dipoles and the electric field direction. We again rely on the theoretical
framework presented previously, through the use of PoPES resulting from diagonaliza-
tion of the Hamiltonian in Eq. (4.4). We first study the scenario of N = 5 molecules,
for which we show the coupled PES in Fig. 5.9a. Particularly, we present a cut of the
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(a) (b)

Figure 5.9: Potential energy surfaces of a system with one light mode and (a) N = 5 molecules
in the strong coupling regime with Rabi frequency ΩR = 0.3 eV and photon energy ωc = 2.55 eV,
and (b) N = 50 molecules with Rabi frequency ΩR = 0.75 eV and photon energy ωc = 2.4 eV.
All molecules but one are fixed at the initial position (q1 = qms ≈ −0.7 a.u.). The color scale
represents the cavity mode fraction of the excited states, going from pure photon (purple) to
pure exciton (orange).

five-dimensional PES where only the first molecule (q1) is allowed to move, while all
others are fixed to the equilibrium position of the metastable ground-state configuration
(qi = qms for i = 2, . . . , 5).

Already for the motion of just a single molecule, our results show that the quantum
yield for the energy-releasing back-reaction can be significantly enhanced under strong
coupling. The lowest-energy excited PoPES (see Fig. 5.9a) is formed by hybridization
of the uncoupled excited-state surfaces of the molecules with the surface representing
a photon in the cavity and the molecule in the ground state (a copy of the ground-
state surface shifted upwards by the photon energy of the confined light mode). The
photon energy (ωc = 2.55 eV) is close to resonant with the electronic excitation energy
at the metastable configuration (q = qms), while most other molecular configurations
(and specifically, the stable configuration q = qs) are out of resonance with the cavity.
This implies that the nature of the lowest excited-state PES changes depending on the
molecular position q, corresponding to a polariton in some cases, and corresponding
to a bare molecular state in others (as indicated by the usual color scale in Fig. 5.9).
In the polaritonic states, each molecule is in its electronic ground state most of the
time (since the excitation is distributed over all the molecules and the photonic mode),
such that the hybrid parts of the lowest excited-state PoPES inherit their shape mostly
from the ground-state PES, as discussed in chapter 4. This leads to the formation of
a new minimum in the lowest excited PoPES at the same position as the fully relaxed
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ground-state minimum qs. The surface consists of two polaritonic regions (close to q1 =

qms and q1 = qs) connected by an almost purely excitonic “bridge” (around q1 = 0,
where the cavity-exciton detuning is large), with smooth transitions between these parts.
In the absence of barriers, a molecular system will quickly relax to the lowest-energy
vibrational state on the lowest excited-state PoPES according to Kasha’s rule [212].
Large-scale molecular dynamics calculations have recently shown that this rule also
applies in polaritonic chemistry [168, 303]. Vibrational relaxation in the lowest excited
hybrid light-matter PES will thus lead to localization of the nuclear wave packet close
to the ground-state minimum qs. As mentioned above, we assume that nonadiabatic
couplings in the bare molecule are negligible along the reaction path, such that the
dominant relaxation pathway is radiative decay. For the vibrationally relaxed wavepacket
at q1 ≈ qs, this would give a quantum yield of essentially unity for the back-reaction
from the metastable to the stable configuration.

We note that this effect can be achieved because no energy barriers appear in the reac-
tion path. Nevertheless, these can still emerge and thus the suppression effect discussed
in section 5.2 is possible with the adequate set of parameters. We show this in Fig. 5.9b,
where we increased the number of molecules to N = 50, as well as increase the Rabi
frequency and detune the photon energy. This introduces an energy barrier of ≈ 230

eV, which would lead to efficient trapping of the wavepacket, effectively suppressing the
reaction. We thus find that precise tuning of the systems parameters can lead to two
complete different outcomes.

5.3.2. Triggering of many reactions in collective strong
coupling

While the previous section already presented a large cavity-induced change of the pho-
tochemical properties of such molecules, we next show that the collective nature of the
polaritons can result in even more dramatic qualitative changes in the system, allow-
ing it to keep releasing energy during sequential relaxation of the molecules from the
metastable to the stable configuration.

To understand this, we have to take into account that the PoPES formed under strong
coupling encompass the nuclear degrees of freedom of all involved molecules. This collec-
tive nature can in particular also allow nuclear motion on different molecules to become
coupled, and in the current case creates a reaction path along which the system can re-
lease the energy stored in all molecules, while staying on a single adiabatic PES reached
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Figure 5.10: (a) Lowest-energy excited state PES for 2 moving molecules in a 5-molecule
ensemble. The minimum energy path (blue to white dots) connects the initial excited region
with the final configuration of the two molecules. (b) Participation ratio map of the lowest-
energy excited state, indicating over how many molecules the state is delocalized. The MEP is
indicated by a dashed black line.

by single-photon absorption in the initial state. This is demonstrated for motion of two of
the involved molecules in Fig. 5.10a, which shows a two-dimensional cut of the PoPES of
the lowest-energy excited state (with all other molecules again frozen in the metastable
position q = qms). We calculate the minimum energy path (MEP) connecting the initial
configuration q1 = q2 = qms to the location where the first two molecules have released
their stored energy (q1 = q2 = qs) using the nudged elastic band method [259]. This ap-
proximate classical trajectory defines the reaction coordinate of the full “supermolecule”
system. The initial position, for which we again assume that all molecules are at q = qms,
corresponds to short-pulse excitation from the ground state in the metastable configura-
tion, according to the Franck–Condon principle. The final position is qi = qs for all i, i.e.
the position where all the molecules are in the stable configuration (corresponding to the
global minimum of the PES). It is worth noticing that due to the indistinguishability
of our molecules, any of the available molecules can undergo the reaction in each step,
and there are N ! equivalent paths from the initial to the final position. Due to rapid
decoherence through interaction with the vibrational bath, we assume that quantum
interference between these equivalent paths can be neglected, and we show only one of
them in the following: the one in which the order of reactions corresponds to the number-
ing of the molecules. Along this path, indicated as a series of points in Fig. 5.10a, there
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are no significant reaction barriers, such that vibrational relaxation after absorption of
a single photon indeed can lead to deactivation of both molecules. While we already
proved in the previous section that simultaneous motion of several molecules is strongly
suppressed in the low-excitation regime, we see that this does not prevent several reac-
tions from occurring. The calculated MEP demonstrates that, to a good approximation,
the reaction proceeds in steps, with the molecules moving one after the other (i.e., in
the first leg, only q1 changes, while in the second leg, only q2 changes).
In order to gain additional insight into the properties of the polariton states that

enable this step-wise many-molecule reaction triggered by a single photon, we further
analyze the lowest excited PES by showing its molecular participation ratio in Fig. 5.10b.
Here, the molecular participation ratio is defined as [304]

Pα(q) =
(
∑

i |〈ei|Ψα(q)〉|2)
2∑

i |〈ei|Ψα(q)〉|4
, (5.6)

where |ei〉 denotes the excited state of molecule i, and the sums are over all molecules.
The participation ratio gives an estimate of the number of molecular states that possess
a significant weight in a given state |Ψα〉, with possible values ranging from Pα = 1 to
Pα = N (for N molecules). Analyzing it for the lowest-energy excited state PoPES (see
Fig. 5.10b) demonstrates that the surface at the starting point corresponds to a collective
polariton, with the excitation equally distributed over all molecules. Along the MEP, the
excitation collapses onto a single molecule (the one that is moving), demonstrated by
the participation ratio decreasing to 1 for −0.5 a.u. . q1 . 0.4 a.u.. As the molecule
moves, it again enters into resonance with the cavity (and the other molecules) and
the state changes character to a fully delocalized polariton with PLP = N (at q1 ≈
0.45 a.u.). However, as the first molecule keeps moving, it falls out of resonance again
and effectively “drops out” of the polaritonic state, leaving the excitation in a polaritonic
state distributed over the photonic mode and the remaining N − 1 molecules (PLP = 4),
which then forms the starting point for the second molecule to undergo the reaction.
Following the MEP along the second leg (where q1 ≈ qs and q2 moves from qms to qs),
the same process repeats, but now involving one less molecule.
We now demonstrate that the same process can keep repeating for many molecules. To

this end, we calculate the MEP for varying numbers of molecules from N = 2 to N = 50,
with a collective Rabi splitting of ΩR = 0.3 eV in the initial molecular configuration
(qi = qms for all i) for all cases. As shown in Fig. 5.11, the energy profile along the
MEP is structurally similar for any number of molecules. The main change is that for
larger values of N , the collective protection effect makes the PES resemble the shape of
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Figure 5.11: Energy profile along the minimum energy paths for collections of 2, 3, 4 and 50
molecules. For N = 50, only the first five steps are shown explicitly. Thin dashed lines indicate
the approximate location along the path where one molecule stops moving and the next one
starts.

the uncoupled PES more strongly, leading to a less smooth MEP with slightly higher
barriers, comparable to the average thermal kinetic energy at room temperature. In
addition, the significant change of collective state when passing the barrier (with the
excitation collapsing from all molecules onto a single one in the “bridge” region around
q = 0) leads to narrow avoided crossings in the adiabatic picture. As in previous chapters,
in a diabatic picture formed by the polaritonic PES of N − 1 coupled molecules and the
remaining bare excited PES, their coupling can be shown to be proportional to the
single-molecule coupling strength ΩR/

√
N , such that to lowest order in perturbation

theory, the transition probability from the polaritonic to the pure-exciton surface scales
as 1/N . However, this effect is compensated by the fact that there are many possible
equivalent paths, corresponding to motion of any of the remaining metastable molecules.
We thus again assume that TST for a single barrier of the same height provides a
reasonable estimate for the average time needed to overcome any one of the barriers.
This gives τ ≈ h

kBT
exp

(
∆E
kBT

)
. 1 ps at room temperature [203]. It should be noted that

several other mechanisms relevant in the current case imply that the TST predictions
correspond to an upper limit, as TST is known to fail in multi-step reactions where the
nuclear wavepacket approaches the barriers with some initial kinetic energy [305], and
also neglects quantum tunneling effects that are important for small energy barriers as
found here.

The estimated times for passing the barriers highlight the importance of the lifetime
of the hybrid light–matter states to determine the feasibility of triggering multiple reac-
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tions with a single photon. In most current experiments, polariton lifetimes (which are
an average of the lifetimes of their constituents) are very short, on the order of tens of
femtoseconds, due to the use of short-lived photonic modes such as localized surface plas-
mons or low-Q modes in metallic and dielectric Fabry–Perot microcavities. In contrast,
the lifetime of the molecular excitations can be limited by their spontaneous radiative
decay, which is on the order of nanoseconds for typical organic molecules. Consequently,
if long-lived photonic modes as available in low-loss dielectric structures such as pho-
tonic crystals or microtoroidal cavities are used instead, there is no fundamental reason
preventing polariton lifetimes that approach nanoseconds. This would thus give enough
time for thousands of molecules to undergo a reaction before the excitation is lost due
to radiative decay.

5.4. Conclusions
To conclude this chapter, we have explored two different possibilities of manipulating
photochemistry using light–matter strong coupling. We first have demonstrated the sta-
bilization of excited-state molecular structure and accompanying strong suppression of
photochemical reactions under strong coupling of molecules to confined light modes.
While already effective in the case of a single coupled molecule, we find that collective
coupling of a large number of molecules to a single light mode provides an even stronger
stabilization due to the collective protection effect. We additionally find that this phe-
nomenon does not vanish in higher excited subspaces. These results do not depend on
the specifics of the molecular model, such that the observed stabilization is expected to
occur for any kind of photochemical reaction that is induced by motion on the excited
molecular PES.
The combination of the effects discussed section 5.2 leads to an almost complete

suppression of photoisomerization, with a potentially much larger predicted effect than
the change in rate observed in [136]. There are two main reasons for this difference. First,
in the experiment the isomer representing the product was the one in strong coupling,
unlike in our study, meaning that was much less affected by the coupling to the cavity.
Second, in here we treat a single confined light mode while the experiment consist of
a planar microcavity that hosts a continuum of light modes. However, a more similar
setup was achieved in a 2016 study by the group of Timur Shegai, where they showed
experimentally the possibility of a 100-fold reduction of the rate of photo-oxidation
of organic dyes by strongly coupling them to plasmonic nanoantennas [141]. This has
been further demonstrated in early 2019, where photodegradation of the semiconducting
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polymer P3HT has been reduced threefold [172]. This confirms that the energy landscape
is sufficiently altered in the strong coupling regime to strongly influence the reaction
kinetics.

Finally, in section 5.3, we have demonstrated that under strong coupling, a single
photon could be used to trigger a photochemical reaction in many molecules. This cor-
responds to an effective quantum yield (number of reactant molecules per absorbed
photon) of the reaction that is significantly larger than one, and thus provides a possible
pathway to break the second (or Stark–Einstein) law of photochemistry without relying
on fine-tuned resonance conditions. The basic physical effect responsible for this surpris-
ing feature is the delocalized nature of the polaritonic states obtained under collective
strong coupling, which require a treatment of the whole collection of molecules as a sin-
gle polaritonic “supermolecule”. For the specific model studied here, this strategy could
resolve one of the main problems of solar energy storage with organic molecules: How to
efficiently retrieve the stored energy from molecules that are designed for the opposite
purpose, i.e., for storing energy very efficiently under normal conditions [301, 302]. By
reversibly bringing the system into strong coupling (e.g., through a moving mirror that
brings the cavity into and out of resonance), one could thus trigger the release of the
stored energy through absorption of a single ambient photon.
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6 | Cavity ground-state
chemistry

6.1. Introduction

In recent years, the possibility of influencing the thermally driven reactivity of organic
molecules in the electronic ground state has been demonstrated by coupling the cavity
to vibrational transitions of the molecules [139, 140, 142, 177]. This opens a wide range
of possibilities, such as cavity-enabled catalysis and manipulation of ground-state chem-
ical processes. In this chapter we theoretically investigate the possibility of modifying
ground-state chemical properties of organic molecules. Other attempts to understanding
these experimental observations have been done. More specifically, it has been shown
that chemical reactions are not strongly modified even under electronic ultrastrong col-
lective coupling [31, 143]. Additionally, in a series of papers based on more microscopic
models, Flick and co-workers have shown that ground state properties can be signifi-
cantly modified under single-molecule (ultra-)strong coupling [147, 148, 160], but have
not explicitly treated chemical reactivity. It has also been reported resonant enhance-
ment of ground-state electron transfer reactions in more specific theoretical descriptions
[180].

In the present chapter, we aim to understand cavity-induced modifications of ground-
state chemistry in coupled molecule-cavity systems using a general theoretical model. In
section 6.2 we present the light–matter interaction Hamiltonian for a single molecule cou-
pled to a nanoscale cavity. Then, we review the cavity Born–Oppenheimer approximation
[147, 148], which allows to approach polaritonic chemistry by treating the photonic DoF
as a continuous parameter and on equal footing as the nuclear DoF. We then present
the Shin–Metiu model [306], a simple molecular model that displays a possible chemical
reaction and that allows us to perform calculations with the full Hamiltonian without
invoking any approximation. Then in section 6.3 we start by obtaining the formally
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exact quantum reaction rates for the system [206–208]. In order to understand these
results we develop a simplified theory based on the cavity Born–Oppenheimer approxi-
mation [147] and on perturbation theory, where we find that we can predict the reaction
rate changes based on transition state theory [203, 307]. Furthermore, this theory allows
us to make explicit connections to electrostatic, van der Waals, and Casimir–Polder in-
teractions. In section 6.4 we present two different calculations in realistic systems such as
a nanoparticle-on-mirror cavity [38, 59, 308], where the single-molecule coupling can be
significant, and on the change in rate in the internal rotation of the 1,2-dichloroethane
molecule, where we demonstrate the full potential of the cavity to inhibit or catalyze reac-
tions, or even to modify the equilibrium configuration of the molecule. Then in section 6.5
we extend our model to an ensemble of molecules and find collective enhancement of the
effect under orientational alignment of the molecular dipoles. We additionally discuss
collective phenomena in section 6.6, where the change of the ground-state equilibrium
structure of the molecule is investigated, also using an approach of polaritonic potential
energy surfaces.
We mention here that we do not explicitly treat the case of many molecules coupled to a

cavity with a continuum of modes, i.e., the case which corresponds to the experimentally
used Fabry–Perot cavities with in-plane dispersion [139, 142]. For the sake of simplicity,
we also neglect solvent effects. While these are well-known to be important in chemical
reactions, their effect depends strongly on the chosen solvent and experimental setup
(particularly in nanocavities). However, we mention that the latest experimental studies
indicate that solvent effects might be responsible and/or relevant for the experimentally
observed resonance-dependent ground-state chemical reactivity [140, 177].

6.2. Theoretical model
We restrict the following discussion to organic molecules coupled to a nanocavity, based
on the Hamiltonian within the quasistatic approximation presented in section 2.3. For
simplicity, we first consider a single molecule including ne electrons and nn nuclei. The
Hamiltonian is thus

Ĥ =
nn∑
i=1

P̂2
i

2Mi

+ Ĥe(x̂, R̂) +
∑
k

ωk

(
â†kâk +

1

2

)
+
∑
k

ωkq̂kλk · µ̂(x̂, R̂). (6.1)

The bare molecular Hamiltonian corresponds to the first two terms: the kinetic energy
of nn nuclei and the electronic Hamiltonian. The latter includes the kinetic energy of
the ne electrons and the nucleus–nucleus, electron–electron, and nucleus–electron inter-
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action potentials. This operator depends on all the electronic and nuclear positions,
x̂ = (x̂1, x̂2, . . . , x̂ne) and R̂ = (R̂1, R̂2, . . . , R̂nn), respectively. In Eq. (6.1) we now use
the photonic displacement1 q̂k = 1√

2ωk
(â†k + âk) and the electric field strength is deter-

mined by the coupling strength λk = λkεk. This coupling constant can be related to
both the single-mode electric field strength and the (position-dependent) effective mode
volume of the quantized mode, with λk =

√
2
ωk
E1ph,k(rm) =

√
4π/Veff,k. Here we use the

general definition of the effective EM mode volume of Eq. (2.71).
In the following, we will first treat a cavity in which only a single mode has significant

coupling to the molecule. Since the interaction depends on the inner product between the
electric field and the total dipole moment µ̂ =

∑nn

i ZiR̂i −
∑ne

i x̂i, only the projection
µ̂ε = ε̂ · µ̂ is relevant, and we only have to deal with scalar quantities. For the sake of
simplicity, we rewrite µ̂ε → µ̂. We also assume perfect alignment between the molecule
and the field unless indicated otherwise.

6.2.1. Cavity Born–Oppenheimer approximation
In order to treat molecules coupled to low-energy photons (such as in vibrational strong
coupling) we make use of the cavity Born–Oppenheimer approximation [148]. We now
review in detail this description, which starts by expressing the photonic DoF as an
explicit harmonic oscillator, where the electromagnetic energy of the k-th mode reads

Ĥ
(k)
EM = ωk

(
â†kâk +

1

2

)
=
p̂2
k

2
+ ω2

k

q̂2
k

2
, (6.2)

with p̂k = i
√
ωk/2

(
â†k + âk

)
and q̂k = 1/

√
2ωk

(
â†k + âk

)
as the photon canonical mo-

mentum and displacement respectively. By comparing this to the electromagnetic energy
presented in section 2.1, we see that the photon displacement is directly related to the
electric displacement field associated to that mode through D̂k = ωkλkq̂k

2 and the pho-
ton momentum is related to the magnetic field [249, 309].

Within the explicit harmonic oscillator description for the electromagnetic Hamilto-
nian, it is possible now to perform an adiabatic separation similar to the standard BOA.
This way of writing the photonic Hamiltonian using a continuous photonic displacement
operator suggests a different approach for treating the photon modes than employed
in the previous chapters: by treating the photonic DoF on equal footing to a nuclear

1Do not confuse the photonic displacement qk with the generalized nuclear coordinate q used in
previous chapters. To avoid confusion, in this chapter nuclear coordinates are explicitly denoted R.

2Note that the vector dependence is in the coupling constant λk = λkek so that the photonic displace-
ment q̂k is a scalar operator.
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coordinate within the BOA. Therefore, we include the photonic DoF in the Born–Huang
expansion (see section 2.2):

Ψ(ri,Rj, qk) =
∑
l

χl(Rj, qk)Φl(ri; Rj, qk), (6.3)

where for simplicity we treat the single-molecule case, and thus ri, Rj, and qk represent
all the electronic and nuclear DoF of the molecule, and photonic coordinates of all the
modes, respectively. The electronic eigenstates satisfy

Ĥe(r̂i; Rj, qk)Φl(ri; Rj, qk) = Vl(Rj, qk)Φl(ri; Rj, qk), (6.4)

where the electronic Hamiltonian is now

Ĥe(r̂i; Rj, qk) = Ĥtot − T̂n −
∑
k

p̂2
k

2
= Ĥmol(r̂i; Rj) +

∑
k

(
ω2
k

2
q2
k + ωkq̂kλk · µ̂(r̂i; Rj)

)
.

(6.5)
In this case the electronic wavefunctions depend parametrically on both the nuclear con-
figuration and the photonic displacements. By replacing this in the Schrödinger equation
we again find a set of differential equations similar to the ones described in Eq. (2.29) of
section 2.1[

T̂n +
p̂2
k

2
+ Vl(Rj, qk)

]
χl(Rj, qk) +

∑
l′

Λ̂ll′(Rj, qk)χl′(Rj, qk) = Eχl(Rj, qk), (6.6)

which are coupled through the new nonadiabatic term

Λ̂
(cav)
ll′ (Rj, qk) = 〈Φl(ri; Rj, qk)|

(
T̂n +

p̂2
k

2

)
|Φl′(ri; Rj, qk)〉ri −

(
T̂n +

p̂2
k

2

)
δll′ . (6.7)

The cavity Born–Oppenheimer approximation (CBOA) [147, 148] consists on neglect-
ing these nonadiabatic terms, and thus considering the electronic PES (now dependent
on nuclear and photonic degrees of freedom) completely independent. Due to the for-
mal equivalence between nuclear and photonic degrees of freedom within this picture3,
all the results and standard procedure discussed in section 2.2 can be extended to the
CBOA. Indeed, the emergent nonadiabatic terms will become relevant when the elec-
tronic PES are close in energy. As we later discuss, the separability condition is precisely
fulfilled in vibrational strong coupling, where photonic and nuclear excitation energies
are comparable [148].

3Note that both Eq. (2.29) and Eq. (6.6) represent the same equation if we considered the photonic
term p̂2k

2 as the kinetic energy of another nuclear DoF.
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Note that this picture does not give any precise insight of the level of hybridization
of light and matter. In conventional strong coupling this is achieved through the Rabi
splitting relative to the resonance frequency ΩR/ω0, where ΩR is the energy separation
between polaritons. In this picture, in order to obtain ΩR, it is required to explicitly
calculate the coupled nuclear-photonic eigenstates determined by the new cavity-PESs.
This is most easily achieved close to local minima, where the surface can be approximated
through coupled harmonic oscillator potentials. A standard procedure in chemistry is to
diagonalize the corresponding Hessian of the surface to obtain the new normal modes.
Let us thus analyze the case of vibrational SC in the ground-state. Consider that once
the CBOA has been performed for a system with one nuclear degree of freedom and one
photonic mode, the ground-state PES close to the minimum is given by

Vg(R, q) =
ω2
ν

2
R2 +

ω2
c

2
q2 + λωcqµg(R), (6.8)

where we are here using mass-weighted coordinates (R → R/
√
M) for the nuclear co-

ordinate of vibrational frequency ων and µg(R) = 〈g(R)|µ̂|g(R)〉 is the ground-state
permanent dipole moment. The Hessian of the surface is

H =

(
ω2
ν λωcµ

′
g(R0)

λωcµ
′
g(R0) ω2

c

)
, (6.9)

where µ′g(R0) is the derivative of the ground-state dipole moment evaluated at the min-
imum R0 = 0. The eigenvalues of the Hessian correspond to the squares of the normal
modes frequencies. In the resonant case with the first vibrational frequency (ωc = ων) it
is straightforward to show that the new frequencies are ω± = ωc

√
1± λ

ωc
µ′g(R0). This is

the standard result for the modes of two coupled harmonic oscillators beyond the RWA
[310]. The connection between the coupling strength and the Rabi splitting is clearer in
the low-coupling limit:

ω± ≈ ωc ±
1

2
λµ′g(R0). (6.10)

The Rabi splitting to lowest order is then ΩR = λµ′g(R0), i.e., proportional to λ. The
first derivative of the momentum corresponds to the transition dipole moment between
nuclear eigenstates, making thus the connection to the Rabi splitting presented in pre-
vious sections. This derivation is equivalent to the one performed in [131], where they
demonstrated vibrational strong coupling in organic molecules for the first time.
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(b)

(a)

(c)

Figure 6.1: (a) Schematic representation of the Shin–Metiu model close to one of the equilib-
rium configurations. The two ions on both sides are fixed at a distance L, while the electron and
the remaining ion can move freely in between. (b) Potential energy surfaces of the model with
the vibrational levels and associated probability densities of the ground state (blue) represented.
(c) Ground state dipole moment.

6.2.2. Shin–Metiu model

In order to study changes in ground-state chemical reactivity induced by strong coupling
to a nanocavity, we first treat a simple molecular model system that is numerically fully
solvable and has been extensively studied in model calculations of chemical reaction rates,
the Shin–Metiu model [306]. It treats three nuclei and one electron moving in one dimen-
sion, as presented in Fig. 6.1a. Two of the nuclei are separated by a distance L and fixed in
place, while the remaining nucleus and the electron are free to move. The repulsive inter-
action of the mobile nucleus with the fixed ones is given by a normal Coulomb potential,
while the attractive electron–nuclei interaction is given by softened Coulomb potentials
Ven(ri) = Zerf(ri/Rc)/ri, where ri is the distance between the electron and nucleus i and
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Rc is the softening parameter. The system has two stable nuclear configurations (minima
of the ground-state Born–Oppenheimer surface) that represent two different isomers of
a charge or proton transfer reaction. Given that the electronic excitations energies and
thus the nonadiabatic couplings between different potential energy surfaces can be var-
ied easily by changing the parameters of the Shin–Metiu model, it has been extensively
studied in the context of correlated electron–nuclear dynamics [311, 312], as well as in
the context of polariton formation under strong coupling [147, 148]. The parameters cho-
sen throughout the present work are Z = 1, L = 10 Å ≈ 18.9 a.u., M = 1836 a.u., and
Rc = 1.5 Å ≈ 2.83 a.u. (for all three nuclei), resulting in the Born–Oppenheimer poten-
tial energy surfaces shown in Fig. 6.1b, with negligible nonadiabatic coupling between
electronic surfaces. The figure also shows the first few vibrational eigenstates close to
each minimum (tunneling through the central energy barrier is negligible for these states,
so that they can be chosen to be localized on the left or right, respectively). In Fig. 6.1c
we show the ground-state permanent dipole moment µg(R) = 〈g|µ(R)|g〉. Below we
demonstrate that, to a good approximation, the ground-state potential energy surface
and dipole moment are sufficient to describe the change in the molecular ground-state
structure and chemical reactivity due to the cavity.

6.3. Effects of the cavity on ground-state reactivity

In this section we study the changes on the ground-state reactivity of the Shin–Metiu
model induced by a single cavity mode, using the Hamiltonian Eq. (6.1). We first analyze
how the reaction rates are modified when increasing the light–matter coupling λ. We
then develop a theory in which we turn to the cavity Born–Oppenheimer approximation
and perturbation theory to explain and predict possible changes.

6.3.1. Reaction rates

The Shin–Metiu model presents a possible ground-state proton-transfer reaction from
the left minimum at R ≈ 4 a.u. to the right one (or vice versa). In the following, we take
advantage of the simplicity of the Shin–Metiu model to exactly compute the quantum
reaction rates without any approximation, as reviewed in section 2.2. This automatically
takes into account all quantum effects, including tunneling and zero-point energy. In
particular, we will find the reaction rates by using Eq. (2.42), which for convenience we
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rewrite here:

k(T ) =
1

Qr(T )

∫ tf→∞

0

Cff (t)dt. (6.11)

In order to obtain the flux operator F̄ = 1
2M

(P̂ s′(R)δ(s) + δ(s)P̂ s′(R)), required to
calculate Cff (t), we define the dividing surface as s(R) = R, such that it divides reactants
and products at R = 0.
In order to obtain the rates of the coupled electronic-nuclear-photonic system, we

discretize all three degrees of freedom, using a finite-element discrete variable represen-
tation [287, 288] for x and R, as well as the Fock basis for the cavity photon mode.
This allows to diagonalize the full Hamiltonian and thus to straightforwardly calculate
the flux-flux autocorrelation function Eq. (2.43) for arbitrary time t. For numerical ef-
ficiency, we perform the diagonalization in steps, first diagonalizing the bare molecular
Hamiltonian, performing a cut-off in energy, and then diagonalizing the coupled system
in this basis. We have carefully checked convergence with respect to all involved grid
and basis set parameters and cutoffs. As is well known [306, 311], due to the absence of
dissipation in the model, for large times the correlation function becomes negative and
oscillates around zero, corresponding to the wave packet that has crossed the barrier
returning back through the dividing surface after reflection at the other side of the po-
tential (at R ≈ 6 a.u.). However, in a real system the reaction coordinate is coupled to
other vibrational and solvent degrees of freedom that will dissipate the energy and pre-
vent recrossing. To represent this, we choose a final time tf around which the correlation
function stays equal to zero for a while and only integrate up that time in Eq. (6.11).
The time chosen, tf = 35 fs, corresponds to typical dissipation times in condensed phase
reactions, and is similar to values chosen in the cavity-free case [306].
We now study the cavity-modified chemical reaction rates of the hybrid system for

different coupling strengths λ. In order to evaluate the strength of the coupling, we note
here that at the resonance condition with vibrational transitions we can link the coupling
constant λ with the Rabi splitting ΩR. Note that in the formation of vibro-polaritons,
i.e., hybridization of the photon mode with the vibrational transitions of the molecule,
the Rabi splitting is determined by the transition dipole moment and frequency of the
quantized vibrational levels of the molecule. Within a lowest-order expansion around the
equilibrium position (see Eq. (6.10) and related discussion), Vg(R) ≈ Vg(R0)+ 1

2
Mω2

ν(R−
R0)2, µg(R) ≈ µg(R0) + µ′g(R0)(R − R0), these are given by ων = 72.6 meV, and µv ≈

1√
2Mων

µ′g(R0), giving a Rabi frequency ΩR = λ√
M
µ′g(R0) on resonance (ωc = ων) [131].

We note that a coupling strength of λ = 0.035 a.u. corresponds to a Rabi splitting of
ΩR ≈ 0.10ων for the first vibrational transition. For the sake of comparison, we mention

126



6.3 Effects of the cavity on ground-state reactivity

0.003 0.004 0.005
1/T (K−1)

10-1210-910-610-3100
k̃
/
T
 (s−1  K−

1
)

0.0000.0050.0100.0150.0200.0250.0300.035

λ
 (a.u.)

Figure 6.2: Arrhenius plot for the rate dependence with temperature in the hybrid system for
several light-matter coupling values. See main text for details.

that single-molecule electronic strong coupling has been achieved with mode volumes of
∼ 40 nm3 [38], corresponding to λ ≈ 0.007 a.u., and there are indications that effective
sub-nm3 mode volumes could be reached due to single-atom hot spots [59, 308], which
would allow the single-mode coupling strength to reach values up to λ ≈ 0.05 a.u..

In Fig. 6.2 we show the resulting rates with different values of the coupling constant
in an Arrhenius plot, i.e., the logarithm of the rate divided by the temperature as a
function of the inverse temperature. The straight lines in Fig. 6.2 confirm that the
hybrid light–matter system follows the behavior described by the Eyring equation [203]

k = κ2πkBTe
− Eb
kBT , (6.12)

which connects the rate of a chemical reaction with the energy barrier Eb that separates
reactants from products. This expression is Eq. (2.41) expressed in atomic units. Here,
κ is a transmission coefficient, typically considered equal to one if nonadiabatic effects
can be neglected close to the transition state.

We thus observe that even under vibrational strong coupling and the accompanying
formation of vibro-polaritons, i.e., hybrid light–matter excitations, the reaction rate can
still be described by an effective potential energy barrier. However, the effective height of
the energy barrier is modified through the CQED effect of strong coupling, leading (for
the studied model) to significantly reduced reaction rates. Although we treat here a single-
mode and single-molecule system, these general observations agree with experimental
studies [139, 140, 142].
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Figure 6.3: (a) Two-dimensional ground-state PES in the cavity Born–Oppenheimer approx-
imation for the Shin–Metiu model for λ = 0.02 a.u. and ωc = 72.6 meV. At R = 0 we show
the dividing surface used to compute the reaction flux from reactant to product states. The
gray dashed line curve corresponds to the energy path along qm(R), i.e., the minimum in q. (b)
Value of the energy path Ṽg(R, qm) for different values of the Rabi frequency, which is related
to the coupling strength through ΩR = λµ′g(R0), where the dipole derivative is evaluated at
the minimum.

6.3.2. CBOA-based model
We develop here a theory not based on full quantum rate calculations (which require the
calculation of nuclear dynamics in 3N − 6 dimensions) and that allows to make predic-
tions beyond simple model systems. In the following we show that this can be achieved
by applying (classical) transition state theory (TST) to the combined photonic–nuclear
potential energy surfaces provided by the cavity Born–Oppenheimer approximation in-
troduced in section 2.3 and that we can get general results by combining CBOA and
perturbation theory.

Cavity Born–Oppenheimer surfaces

We now apply the cavity Born–Oppenheimer approximation to our system with the
goal to get the cavity-PES of the ground state Ṽg(R, q) in which the modifications when
increasing λ are visible. We achieve this by diagonalizing the new electronic Hamiltonian
Ĥe(x̂;R, q) = Ĥ − p̂2

2
− P̂ 2

2M
. Conceptually, the photonic displacement corresponds to a

single additional nuclear-like DoF. This allows to apply standard tools such as TST to
obtain an estimation for reaction rates. With this theory it is only necessary to calculate
the effective energy barrier for the reaction within the ground-state CBOA surface.
We use this for the Shin–Metiu model coupled to a cavity mode on resonance with the
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6.3 Effects of the cavity on ground-state reactivity

Figure 6.4: Energy barrier and rates ratio vs coupling strength for the case of a CBOA calcula-
tion (full lines) and for the effective energy barrier fitted from exact quantum rate calculations
(dashed lines).

first vibrational transition. The two-dimensional PES Ṽg(R, q) is shown in Fig. 6.3a for
a coupling strength of λ = 0.02 a.u., which corresponds to a vibrational Rabi splitting
of ΩR ≈ 0.05ων . The second panel, Fig. 6.3b, shows the minimum along q of this surface
as a function of R, i.e., along the path indicated by the curved dashed line in Fig. 6.3a,
for a set of coupling strengths λ that induce a Rabi splitting of up to ΩR = 0.1ων . This
path closely corresponds to the minimum energy path of the proton transfer reaction
within the CBOA. As the coupling is increased, the minima become deeper, while the
transition state (TS) at R = 0 stays unaffected. This leads to an effective increase of the
reaction barrier Ẽb = Ṽg(RTS, qTS)− Ṽg(Rmin, qmin), as shown in Fig. 6.4.

In this figure we also show the corresponding change in the rate predicted by Eq. (6.12).
The full lines correspond to the energy barrier calculated within the CBOA (blue) and
the corresponding rate (red) according to TST, while the dashed lines show the effec-
tive energy barrier E(eff)

b extracted from the fit to the Arrhenius plot Fig. 6.2 and the
corresponding change in the rate obtained from the full quantum rate calculation above.
As can be seen, the effective and CBOA energy barriers agree very well, with just an
approximately constant overestimation of the barrier in CBOA due to quantum effects
such as zero-point energy and tunneling, which remain unaffected by the cavity. This
leads to excellent agreement for the change of the reaction rate obtained from the full
quantum calculation and the CBOA-TST prediction. As expected from our previous
discussion, the reaction rate of the hybrid cavity–molecule system decreases dramati-
cally as the coupling increases due to the increase of the energy barrier height. Finally,
we also calculate the CBOA energy barrier corrected by ∆̃zp, the difference between
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the zero-point vibrational frequencies at the minimum and transition states as obtained
from the Hessian of the PES (disregarding the direction of negative curvature at the TS).
This is shown as a dash-dotted line in Fig. 6.4, and considerably improves the absolute
agreement with the effective barrier extracted from the full quantum rate calculations.
While we have up to now worked within a single-mode model, the CBOA actually

makes it straightforward to treat multiple photonic modes. The ground state PES then
parametrically depends on multiple parameters qk, one for each mode, just as a realistic
molecule depends on multiple nuclear positions Ri. Similarly, the adiabatic surfaces are
not harder to calculate than for the single-mode case, and minimization strategies can
rely on the same approaches used in “traditional” quantum chemistry. We note that for
a general cavity, the mode parameters can be obtained either by explicitly quantizing
the modes (which is in general a difficult proposition) or, alternatively, by rewriting the
spectral density of the light-matter coupling (proportional to the EM Green’s function)
as a sum of Lorentzians [224, 313–315].

Perturbation theory

As we have seen, the cavity Born–Oppenheimer approximation provides a convenient
framework to evaluate cavity-induced changes in chemical reactivity based on energy
barriers in electronic PES that are parametric in nuclear and photonic coordinates. In
particular, the interaction term ωcqλ · µ̂, with q as a parameter, is equivalent to that
obtained from applying a constant external electric field. The cavity PES for arbitrary
molecules can thus be calculated with standard quantum chemistry codes. However,
obtaining the barrier in general still requires minimization of the molecular PES along
the additional photon coordinate q (or coordinates qk, if multiple modes are treated). If
the coupling is not too large and the relevant values of q are small enough, the ground-
state cavity PES can instead be obtained within perturbation theory, which up to second
order in λ is given by

Ṽg(R, q) ≈ Vg(R) +
ω2
c

2
q2 + λωcqµg(R)− λ2

2
ω2
cq

2αg(R), (6.13)

where Vg(R) and µg(R) are the bare-molecule ground-state PES and dipole moment,
respectively, while αg(R) is the ground-state static polarizability (see section 2.2),

αg(R;ω = 0) = 2
∑
m6=g

|µm,g(R)|2

Vm(R)− Vg(R)
, (6.14)

and encodes the effect of excited electronic levels, with µm,g(R) the transition dipole
moment between bare-molecule electronic levels m and g. Obtaining the full ground-
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Figure 6.5: Cavity Born–Oppenheimer energy barrier (purple) and relative change of reaction
rates (yellow) for the Shin–Metiu model inside a cavity, calculated to all orders in the light-
matter coupling strength λ (solid lines), and up to second order in perturbation theory (dashed
lines).

state cavity PES within this approximation then just requires the calculation of the
bare-molecule ground-state properties Vg(R), µg(R), and αg(R).

In addition to providing an explicit expression for the CBO ground-state PES in
terms of bare-molecule ground-state properties, the simple analytical dependence on q
in Eq. (6.13) allows to go one step further and obtain explicit expressions for the local
minima and saddle points (i.e., transition states). In these configurations, the following
conditions are satisfied:

∂qṼg(R, q) = 0, (6.15a)

∂RṼg(R, q) = 0. (6.15b)

These conditions yield a set of coupled equations that can be solved in order to find
the configuration of the new critical points along the reaction path. The expression of
Eq. (6.15)a gives the explicit condition

qm(R) = − λ

ωc

µg(R)

1− λ2αg(R)
, (6.16)

which can be used to obtain the potential profile along the minimum in q,

Ṽg(R, qm) = Vg(R)− λ2

2
µ2

g(R) +O(λ4), (6.17)

where we have dropped terms of order λ4 since the perturbation-theory PES Eq. (6.13)
is only accurate to second order. This shows that the energy barrier on the cavity
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PES (within second-order perturbation theory) can be calculated directly from the bare-
molecule potential and permanent dipole moment. In Fig. 6.5, we analyze the validity
of Eq. (6.17) for computing the barrier height within the Shin–Metiu model. It can be
observed that perturbation theory works quite well for the whole range of couplings,
with a relative error in the cavity-induced change of the energy barrier of about 10%

for the largest considered couplings. Due to the exponential dependence of the rates on
barrier height, this corresponds to an appreciable error in the rate constant, but still
provides a reasonable estimate. Note that in the case of the Shin–Metiu model, the error
of the energy barrier stems entirely from the change at the minimum configuration, as
the transition state has zero dipole moment due to symmetry and is not affected by the
cavity.
It is interesting to point out that Eq. (6.17) closely resembles the expression obtained

in electric field catalysis where an external voltage is applied [316], or to electrostatic
shifts provided by some catalysts [317]. This strategy exploits the Stark effect, i.e., the
energy shift observed in the presence of a static electric field, to induce changes in the
energies of the transition state relative to the minimum configuration. As noted before,
the CBOA corresponds to treating the influence of the cavity through an adiabatic
parameter q determining the electric field strength. However, instead of being externally
imposed, in our case the effective field, determined by Eq. (6.16), is the one induced in
the cavity by the permanent dipole moment of the molecule itself. This also lends itself
to an electrostatic interpretation of the effect.
In addition to the minimum energy barrier of the cavity PES itself, the effective energy

barrier is also affected by the zero-point energy due to the quantization of nuclear and
photonic motion (see Fig. 6.3). We can obtain its cavity-induced shift within perturbation
theory by using Eq. (6.16) to rewrite Eq. (6.13) as

Ṽg(R, q) = Ṽg(R, qm) +
ω2

eff(R)

2
(q − qm(R))2, (6.18)

where ωeff(R) = ωc − λ2

2
ωcαg(R) + O(λ4), such that the photonic zero-point energy

ωeff(R)/2 is decreased due to the polarizability of the molecule. We note that this only
accounts for the quantization of the photonic motion along q. Indeed, there is an addi-
tional correction due to the vibrational contribution to the molecular polarizability. This
can be obtained by diagonalizing the Hessian of Eq. (6.9) and calculating the zero-point
energy, which up to second order is given by − ωcΩ2

R

4ωv(ωc+ωv)
, where ΩR = λ√

M
µ′g(R0) is

the on-resonance vibrational Rabi splitting as discussed in above. As can be appreciated
from Fig. 6.4, the contributions due to zero-point (photonic and vibrational) fluctuations
only contribute negligibly to the change in reaction rate in the Shin–Metiu model.
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In general, a significant change of polarizability (either electronic or vibrational, which
can be comparable in some molecules [318–320]) from the equilibrium to the transition
state configuration could lead to similarly large effects as a change in the permanent
dipole moment, especially if the cavity frequency ωc is relatively large. However, it can
be estimated that the vibrational contribution to the zero-point energy shift is negligible
for conditions typical for vibrational strong coupling. To be precise, at resonance ωc = ωv,
this reduces to −Ω2

R/(8ωv). Even for a relatively large vibro-polariton Rabi splitting of
ΩR ≈ 0.2ωv [131, 321, 322], this contribution is of the order of ≈ 10−2ωv, and thus small
compared to typical barrier heights.

Finally, we note that the energy shifts above can be straightforwardly generalized to
the case of multiple cavity modes within second-order perturbation theory. This simply
leads to a sum over modes k, giving a final energy shift

δE(R) = −
∑
k

λ2
k

2

(
µ2

g(R) +
ωk
2
αg(R)

)
. (6.19)

This general expression, which is just the second-order energy correction due to coupling
to a set of cavity modes within the CBOA, corresponds to the well-known Casimir–
Polder energy shift [18]. The additional cavity Born–Oppenheimer approximation, in
which nonadiabatic transitions between electronic surfaces are neglected, amounts to the
approximation that the relevant cavity frequencies ωk are much smaller than the elec-
tronic excitation energies Vm(R)−Vg(R), such that only the (electronic) zero-frequency
polarizability αg(R) appears in the second term. In contrast, the first term depends
only on the ground-state molecular permanent dipole moment µg = 〈g|µ̂|g〉, which does
not involve electronically excited states, and the CBOA thus does not amount to an
additional approximation.

Interestingly, for cavities with a dipole-like field, the perturbative energy shifts ob-
tained here correspond exactly to van der Waals forces [198]. We can easily demonstrate
this for a general nanoparticle with a series of (bosonic) dipole resonances character-
ized by (vectorial) transition dipoles µk and frequencies ωk. In this case, the coupling
operators λk at the molecular position rm are determined by the static dipole–dipole
interaction,

λk =

√
2

ωk

(
3(µk · rm)rm

r5
m

− µk

r3
m

)
. (6.20)

For simplicity, we assume rm to be along the x-axis, and all dipoles to be oriented along
z, which leads to λk =

√
2
ωk

µk
r3m

. By inserting this in Eq. (6.19) and using the definition
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of the zero-frequency polarizability of the nanoparticle αn(0) =
∑

k

2µ2k
ωk

, we get that

δE(R) = −
αq(0)µ2

g(R)

2r6
m

−
∑
k

µ2
kαg(R)

2r6
m

. (6.21)

where the first term corresponds exactly to the static energy of a permanent dipole µg

at rm with the induced dipole of a polarizable sphere at the origin (Debye force), and
the second term corresponds to the London force [323].
Eq. (6.19) is general for any kind of molecular process as long as the light–matter

coupling is not too large. It demonstrates that the most relevant bare-molecule proper-
ties determining cavity-induced chemical reactions in the ground state are the permanent
dipole moment and polarizability close to equilibrium, µg(R0) and αg(R0), and transition
state, µg(RTS) and αg(RTS), configurations, and not the transition dipole moment of the
vibrational excitation close to equilibrium, µν ∝ µ′g(R0), that determines the Rabi split-
ting. In addition to changing reaction barriers, it should be noted that the cavity-induced
modification could potentially lead to a plethora of diverse chemical modifications, such
as a change of the relative energy of different (meta-)stable ground-state configurations
and thus a change of the most stable configuration, or even the creation or disappear-
ance of stable configurations. Furthermore, depending on the particular properties of the
molecule, the cavity-induced change in the energy barriers can either lead to suppression
or acceleration of chemical reactions.

6.3.3. Resonance effects
The results presented above predict a change in the ground-state reactivity that is ac-
tually independent of the cavity photon frequency and in particular does not rely on
any resonance effects between the cavity mode and the vibrational transitions of the
molecule. Although the cavity PES can and does represent vibro-polariton formation
through normal-mode hybridization, as discussed above and in section 2.3, the subse-
quent TST used to predict changes in chemical reaction rates is an inherently classical
theory and does not depend on the quantized frequencies of motion on the PES, and,
as mentioned above, neither on the transition dipole moment between vibrational levels
(determined by the derivative of the permanent dipole moment). While we have shown
that TST agrees almost perfectly with full quantum rate calculations, where nuclear and
photonic motion is quantized and polariton formation is thus included, all calculations
above have been performed for the resonant case ωc = ων .
We thus investigate whether there is any resonance effect on chemical ground-state
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Figure 6.6: Ratio between on- (k̃) and off-cavity (k) rates vs the cavity frequency for three dif-
ferent values of the coupling strength. We increase the density of points close to the vibrational
frequency of the molecule ων ≈ 72.6 meV in order to explore potential resonance effects.

reactivity by performing full quantum rate calculations for a wide range of cavity frequen-
cies within the Shin–Metiu model. In Fig. 6.6, we represent the change k̃/k in the calcu-
lated reaction rate of the coupled system relative to the uncoupled molecule as a function
of ωc, for three different coupling strengths λ. Here, the values at ωc = ων correspond to
the results shown in Fig. 6.3 and Fig. 6.4. We observe that the cavity rates are essentially
constant with the frequency, with only a small modulation (k̃(ωc →∞)− k̃(ωc → 0) 6= 0)

that becomes more important for larger couplings. For the cases represented in Fig. 6.6,
this goes from a relative modulation of 0.4% for λ = 0.005 a.u. to a 7% modulation
for λ = 0.02 a.u.. However, no resonance effects are revealed close to the vibrational
frequency of the molecule, ων . At the same time, the vibrational frequency appears to
be the relevant energy that separates the high- and low-frequency limits for the rates,
with TST working particularly well exactly around that value. In the following, we show
that both limits can be understood by different additional adiabatic approximations.

In the high-frequency limit, ωc � ων , the photonic degree of freedom is fast compared
to the vibrational one, and can thus be assumed to instantaneously adapt to the current
nuclear position R. This implies that the photonic DoF can be adiabatically separated
(just like the electronic ones), and nuclear motion takes place along an effective 1D-
surface determined by the local minimum in q, i.e., along the path sketched in Fig. 6.3(a),
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or, within lowest-order perturbation theory, along the surface defined by Eq. (6.17).
Quantum rate calculations along this effective 1D PES indeed reproduce the reaction
rate in the high-frequency limit perfectly. Furthermore, we note that in this limit, it
becomes convenient to directly group the photonic and electronic degrees of freedom to
obtain PoPES when performing the Born–Oppenheimer approximation. In particular,
this approach leads to exactly the same expression for the effective ground-state PES.
In the low-frequency limit, ωc � ων , on the other hand, the photonic motion is much

slower than the vibrations and can also be adiabatically separated. The photons are now
too slow to adjust their configuration and q can be assumed to stay constant during the re-
action. The full quantum rate can then be obtained by performing a thermal average of in-
dependent 1D quantum rate calculations for each cut in q of the two-dimensional surface
Ṽg(R, q). Here, the (normalized) thermal weight at each q, P(q) = exp(−〈E〉(q)/kBT ), is
calculated by calculating the average thermal energy of the system 〈E〉(q) for constant
q. Again, this approximation agrees perfectly with the full quantum rate calculation for
ωc → 0.
These results imply that, on the single-molecule level, the formation of vibro-polaritons

when ωc ≈ ων is not actually required or even relevant for the cavity-induced change
in ground-state chemical structure and reactivity. This fact can be appreciated by a
simple intuitive argument: vibrational strong coupling primarily occurs with the lowest
vibrational transitions close to the equilibrium configuration, while chemical reactions
that have to pass an appreciable barrier are typically determined by the properties of
the involved transition state, and the associated barrier height relative to the ground-
state configuration. In general, neither of these are related to the properties of the lowest
vibrational transitions (i.e., curvature of the PES and derivative of the dipole moment
at the minimum).
The absence of resonance effects can also be appreciated through the connection to

the well-known material-body-induced potentials obtained within perturbation theory.
For example, as we have demonstrated above, if the EM mode is well-approximated by
a point-dipole mode, the obtained energy shift in the cavity PES can be rewritten as
a van-der-Waals-like interaction between the permanent dipole moment of the molecule
and the dipole it induces in the nanoparticle. This corresponds to the Debye force. In
turn, the zero-point energy of the EM field reproduces the London dispersive force due to
vacuum fluctuations, and depends on the polarizability of the molecule. For an arbitrary
EM environment, this effect can also be directly linked to Casimir–Polder forces [18,
324], which exactly correspond to the generalization of emitter–emitter interactions to
arbitrary material bodies (e.g., cavities). In particular, within the perturbative regime,

136



6.4 Modifying chemistry on realistic systems

the applicability of Casimir–Polder approaches could also be used to replace the explicit
sum over modes k by integrals involving the EM Green’s function [218, 219], which
is readily available for arbitrary structures. This provides an additional argument for
the absence of resonance effects in our calculations, as (ground-state) Casimir–Polder
forces are well-known not to depend on resonances between light and matter degrees of
freedom.

While we do not explicitly treat the situation in recent experiments on the modification
of ground-state reactions by vibrational strong coupling (which were found to depend
strongly on resonance conditions [139, 140, 142, 177]), we believe that our results indicate
that the resonance-dependent effects cannot be explained by a straightforward modifica-
tion of ground-state reaction energy barriers at thermal equilibrium, as these would be
captured by TST within the CBOA also in a many-mode, many-molecule setting.

6.4. Modifying chemistry on realistic systems
Up to now we have studied ground-state chemistry in a general way, obtaining useful
expressions such as Eq. (6.19) which describe the Casimir–Polder energy shift in arbitrary
cavities. In order to quantitative analyze the results, we used the Shin–Metiu model
coupled to a single-mode cavity. Indeed, this is a great simplification of the system, so
we here demonstrate the power of this theory by applying it to more realistic examples. In
this section we analyze two different scenarios. First, we study a multi-mode cavity that
is experimentally available and can reach large enough values of the coupling strength so
that relevant chemical changes are visible. Then, we will apply the theory to a realistic
scenario of internal rotation in the 1,2-dichloroethane molecule, showing not only that
this theory can be combined with quantum chemistry approaches in order to predict more
complex and relevant chemical changes, but also that reactions can be both inhibited or
catalyzed depending on the molecular properties.

6.4.1. Multi-mode cavity: nanoparticle-on-mirror
To demonstrate that the effects predicted above can be significant in realistic systems,
we treat a nanoparticle-on-mirror cavity with parameters taken from the experiment
in [38]. This consists of a spherical metallic nanoparticle (radius R = 20 nm) separated
by a small gap from a metallic plane, see the inset of Fig. 6.7. In this system, there
is a series of multipole modes coupled to the molecule [224], with nontrivial behavior.
Although several strategies can be employed to obtain the quantized light modes in this
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Figure 6.7: Change of the energy barrier for the Shin-Metiu model inside a nanoparticle-on-
mirror cavity as a function of gap size. The right y-axis shows the corresponding values of the
effective single-molecule coupling strength λeff =

√∑
k λ

2
k. Inset: Illustration of nanoparticle-

on-mirror cavity geometry, with a single molecule placed in the nanogap between a planar
metallic surface and a small metallic nanoparticle of radius R = 20 nm.

system [224, 308], we instead exploit that the dominant contribution we found above is
due to Debye-like electrostatic forces induced by the permanent molecular dipole, and
thus simply solve the electrostatic problem. To be precise, we calculate the energy shift of
a permanent dipole in this cavity as obtained by its interaction with the field it induces
in the cavity itself. Due to the simple involved geometric shapes (a sphere and a plane),
this can be achieved by the technique of image charges and dipoles.
In this nanocavity (see inset of Fig. 6.7) a permanent dipole will generate an infinite

series of image dipoles in both the sphere and the plane due to successive “reflections” of
each image dipole on both components of the cavity. In practice, this infinite converging
series can be truncated after a finite number of terms to obtain any desired degree of
accuracy. Considering both a charge q and a dipole µ at position r relative to the center
of a perfectly conducting grounded sphere of radius R, the resulting images will be
located at r′ = (R/r)2r (where r = |r|) and consist of a charge and dipole given by

q′ = −R
r
q +

R

r3
r · µ, (6.22a)

µ′ =

(
R

r

)3 [
2r (r · µ)

r2
− µ

]
. (6.22b)

Here, it is important to take into account that the image of a dipole in a sphere always
consists of both a charge and a dipole. The corresponding expressions for a plane can
be obtained by simply taking R→∞ (and moving the center of the sphere accordingly
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to keep the planar surface fixed). The cavity-induced energy shift of the dipole is then
given by U = −1

2
Eind ·µ, where Eind is the total field generated by all image dipoles and

charges, and the factor 1
2
is due to them being induced.

We now rely again on perturbation theory, i.e., we assume that the molecular re-
arrangement due to its self-induced field is negligible. Within this approximation, the
energy shift we obtain from the purely electrostatic calculation is equivalent to the term
proportional to µ2

g in Eq. (6.19). The corresponding change ∆Eb in the height of the
energy barrier for the Shin–Metiu molecule is shown in Fig. 6.7 as a function of the
gap size (as a point of reference, the estimated gap size in [38] is 0.9 nm). We find
that the change in energy barrier can be significant, corresponding to a change of the
reaction rate by an order of magnitude or more (cf. Fig. 6.5). For comparison, in the
figure we also show the effective coupling strength λeff =

√∑
k λ

2
k corresponding to each

gap size. This value corresponds to the coupling strength in a single-mode cavity that
would give the same total energy shift as obtained in this realistic multi-mode cavity.
We note that we have here treated a perfect spherical nanoparticle, and did not include
atomic-scale protrusions, which have been found to lead to even larger field confinement
due to atomic-scale lightning rod effects [59, 308, 325]. For the experimental gap size
of 0.9 nm, the effective coupling still becomes as large as λeff ≈ 0.031 a.u., correspond-
ing to Veff = 4π/λ2

eff ≈ 1.9 nm3. This corresponds to a change in the energy barrier
of ∆Eb ≈ 0.07 eV for the Shin-Metiu model within second-order perturbation theory,
which starts to break down at these couplings, as we previously saw in Fig. 6.5. This
large effective coupling demonstrates the importance of the multi-mode nature of these
cavities and the contribution of optically dark modes, as the “bright” nanogap plasmon
mode that is seen in scattering spectra has an estimated mode volume of ≈ 40 nm3.

6.4.2. 1,2-dichloroethane molecule
We now apply the CBOA-TST theory to treat the internal rotation of 1,2-dichloroethane.
In order to obtain the ground-state cavity PES under strong light–matter coupling, we
calculate the (ground and excited-state) bare-molecule potential energy surfaces and
permanent and transition dipole moments for a scan along the rotation angle (defined
as the Cl-C-C-Cl dihedral angle). For simplicity, we here use the relaxed ground-state
configuration of the bare molecule for each rotation angle, i.e., we neglect cavity-induced
changes in DoF different from the internal rotation angle. The molecular properties
are obtained with density functional theory calculations with the B3LYP [326] hybrid
exchange-correlation functional and the 6-31+G(d) basis set. Excited states were com-
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Figure 6.8: Top: Different configurations along the internal rotation of 1,2-dichloroethane. (a)
Energy landscape and dipole moment of the molecule. (b) Modified energy path for minimum
q for different coupling strengths. The energy barriers of the bare molecule are defined as
E1 = V (120◦) − V (70◦), E2 = V (0◦) − V (70◦), and E3 = V (120◦) − V (180◦). (c) Relative
modification of the energy barriers depending on the coupling strength for the full calculation
(full lines, circles) and for perturbation theory (dashed lines, triangles). The marked points
indicate relevant changes in the rate.

puted with time-dependent density functional theory within the Tamm–Dancoff approx-
imation [327]. All calculations were performed with the TeraChem package [273, 274].

The rather simple 1,2-dichloroethane molecule presents several characteristic configu-
rations along the rotation of the chlorine atoms around the axis defined by the carbon-
carbon bond (see top of Fig. 6.8). It thus constitutes an excellent model system to
show several possible effects induced by coupling to a cavity. In Fig. 6.8a we present
the calculated ground state energy landscape and dipole moment, while some relevant
configurations are shown at the top. Analogously to the Shin–Metiu case, we present the
path of minimum energy along q in Fig. 6.8b, but here calculated within perturbation
theory, Eq. (6.17). We have explicitly checked that the contribution due to London forces
is negligible here as well, and focus on the Debye-like contribution in the following. We
see that the most stable configuration (θ = 180◦) shows no change due to the absence of
a permanent dipole moment, while the most unstable one presents a large energy shift.
Therefore the different energy barriers of the system, represented versus the coupling
strength in Fig. 6.8c, are altered significantly. Here we compare the energy barriers as
predicted by perturbation theory (dashed lines) with the ones from a full diagonalization
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of the electronic Hamiltonian within the CBOA (full lines). In order to perform a full
calculation we have calculated the electronic potential energy surfaces and the full dipole
moment operator for a basis of 17 electronic states. We also indicate the points at which
the coupling leads to important changes in the relative rates calculated with TST, i.e.,
the coupling/energy at which we achieve either suppression of k̃/k = 0.5 or enhancement
of k̃/k = 1.5 or 2. We see that in the case of perturbation theory (triangles) the energy
changes are slightly underestimated and thus larger couplings are needed to reach the
same rate change as in the full calculation (circles).

As can be clearly seen, this still relatively simple molecule shows several different kinds
of phenomena. We see that the reaction rate out of the global minimum at θ = 180◦,
corresponding to E3, is increased. On the other hand, E1 increases and the local minimum
situated at θ = 70◦ is thus stabilized. Fig. 6.8b suggests that this effect could potentially
become more dramatic for larger couplings than treated here, as θ = 70◦ could become
the new global minimum of the system. Finally, it is worth noting that the locations of
the minima in energy also change for larger couplings. This shift is most noticeable for
the minimum at θ = 70◦, which transforms to θ̃ ≈ 68◦ for λ = 0.05 a.u..

6.5. Collective effects
We now turn to the description of collective effects, i.e., the case of multiple molecules.
For simplicity, we again restrict the discussion to a single cavity EM mode. As discussed
above, the single-molecule effects we have discussed up to now only become significant
for coupling strengths λ =

√
4π/Veff corresponding to the smallest available plasmonic

cavities, which typically operate at optical frequencies. However, typical experimental
realizations of vibrational strong coupling are performed in micrometer-size cavities filled
with a large number of molecules [131, 134, 139, 321]. In this case, the per-molecule
coupling λ is so small that the single-molecule effects discussed above are completely
negligible. For strong coupling and the associated formation of vibro-polaritons, the
coherent response of all molecules leads to a collective enhancement of the Rabi splitting
ΩR,col =

√
NΩR. However, as we have seen that the cavity-induced modification of the

single-molecule ground state does not depend on the formation of polaritons, it is not a
priori obvious whether this collective enhancement of the Rabi splitting also translates
to cavity-induced collective modifications of the effective reaction barrier.

We thus repeat the analysis performed for the single-molecule case above for the case of
multiple molecules, working directly within the cavity Born–Oppenheimer approach. We
note that the arguments for its applicability for treating ground-state chemical reactions
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translate straightforwardly from the single- to the many-molecule case. For N identical
molecules, the CBO light–matter interaction Hamiltonian becomes

Ĥ(N)
e =

ω2
c

2
q2 +

∑
i

(
Ĥe(x̂i;Ri) + ωcqλi · µ̂(x̂i;Ri)

)
+
∑
i,j

Ĥdd(x̂i, x̂j;Ri,Rj), (6.23)

where Ĥdd accounts for direct intermolecular (dipole–dipole) interactions. We stress that
we again assume that only a single cavity mode is significantly coupled to the molecules.
The cavity-mediated dipole–dipole interaction is thus fully contained within the light–
matter coupling term, and Ĥdd corresponds to the free-space expression [234]. In the
following discussion, we will again use lowest-order perturbation theory to obtain an-
alytical insight. The cavity–molecule and dipole–dipole interaction terms are then in-
dependent additive corrections. We first focus on the cavity-induced effects, and will
discuss the influence of direct dipole–dipole interactions later, in particular when study-
ing a prototype implementation: A nanosphere surrounded by a collection of molecules.
For simplicity of notation, we again use scalar quantities to indicate the component of the
dipole along the field direction, but keep the index ε to make this explicit, i.e., λi = λiεi

and εi ·µ(Ri) = µε(Ri), so that we can rewrite the interaction term of the Hamiltonian
as ωcq

∑N
i λiµ̂ε(x̂i;Ri). The full Hamiltonian now corresponds to a many-body prob-

lem even for simple model molecules. Within second-order perturbation theory, the new
(many-molecule) ground-state cavity PES is

Ṽ (N)
g (Rt, q) =

∑
i

Vg(Ri) +
ω2
c

2
q2 + ωcq

∑
i

λiµg,ε(Ri)−
ω2
c

2
q2
∑
i

λ2
iαg,εε(Ri), (6.24)

where Rt = (R1,R2, . . . ,RN) collects the nuclear configurations of all the molecules.
With this result, we can again apply the usual conditions for finding critical points in
order to analytically find the minimum along q and the corresponding total energy of
the hybrid system up to second order in λi,

Ṽ (N)
g (Rt, qm) =

∑
i

Vg(Ri)−
1

2

(∑
i

λiµg,ε(Ri)

)2

. (6.25)

It can be seen that the cavity-induced shift depends on the square of the sum of the
(coupling-weighted) permanent dipole moments of the molecules, not on the sum of
their squares. Assuming perfect alignment and identical configurations for all molecules,
this gives an energy shift −N2λ̄2|µg(R)|2, where λ̄ = 1

N

∑
i λi is the average coupling.

The per-molecule energy shift is then linear in N , indicating collective enhancement of
the molecule-cavity interaction. In contrast, the London-force-like change in zero-point
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energy due to the modification of the effective cavity frequency is additive,

ωeff = ωc −
ωc
2

∑
i

λ2
iαg,εε(Ri) +O(λ4

i ), (6.26)

with a total zero-point energy shift 1
2
(ωeff−ωc) proportional to N , and shows no collective

enhancement for single-molecule reactions. It is interesting to note that the connection
between polarizability and the dielectric function of a material through the Clausius–
Mossotti relation suggests that this energy shift is equivalent to the change of mode
frequency due to the refractive index of the collection of molecules. The shift in cav-
ity mode frequencies due to refractive index changes after chemical reactions is exactly
the effect used in experiments to monitor reaction rates under vibrational strong cou-
pling [139, 140, 142]. We also mention that at higher levels of perturbation theory, cavity-
mediated contributions analogous to the Axilrod–Teller potential, i.e., van-der-Waals
interactions between three emitters, appear in the intermolecular potential [218, 328].

Based on Eq. (6.25), we can analyze the effect of the cavity on the reaction rate
of a single molecule within the ensemble. This is determined by the energy difference
between minimum-energy and transition-state configurations of that molecule, with the
other molecules fixed in a stable configuration (here chosen to be the minimum for all
of them). For simplicity, we assume that the critical configurations RMin and RTS of the
coupled system are equal to the uncoupled ones (as we have seen above, the shifts are
generally small). We can then directly express the change in the energy barrier of the
moving molecule (chosen to be molecule i = 1 here) as

Ẽb = Eb −
λ2

1

2

(
µ2

g,ε(R1,TS)− µ2
g,ε(R1,Min)

)
−

λ1

(
N∑
i=2

λiµg,ε(Ri,Min)

)
(µg,ε(R1,TS)− µg,ε(R1,Min)) . (6.27)

This expression can be straightforwardly interpreted, with the first part corresponding
to the Debye-like interaction of molecule 1 itself with the cavity, and the second part
corresponding to the cavity-mediated interaction of molecule 1 with all other molecules
(which itself can be understood as the sum of two equal contributions, the interaction of
the moving molecule with the cavity field induced by all other molecules, as well as the
interaction of all other molecules with the cavity field induced by the molecule). Within
perturbation theory, this Debye-like energy shift is again equivalent to the electrostatic
energy, in this case that of a collection of permanent dipoles interacting with the cavity,
i.e., a material structure. This makes the connection to electric field catalysis [316] even
more direct, with the difference that the electric field is not generated by applying an
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external voltage, but represents the cavity-enhanced field of all the other molecules. The
fact that the main contribution is just the electrostatic energy shift also demonstrates
the equivalence of our results to the approach of taking into account non-resonant effects
through cavity-modified dipole–dipole and dipole-self interactions [234].
To treat the dependence on molecular orientations explicitly, we define the alignment

angle θi for each molecule through µg,ε(Ri) = |µg(Ri)| cos θi. Inserting this in Eq. (6.27),
we obtain

Ẽb = Eb −
λ2

1

2

(
µ2

g,ε(R1,TS)− µ2
g,ε(R1,Min)

)
−

N ′λ̄2〈cos θ〉′|µg(RMin)|λr,1 (µg,ε(R1,TS)− µg,ε(R1,Min)) , (6.28)

where λr,i = λi/λ̄ is the relative coupling of molecule i, 〈cos θ〉 = 1
N

∑
i λr,i cos θi is

the coupling-weighted average orientation angle, and primed quantities indicate that
only molecules 2 to N are taken into account (for N � 1, they can be replaced by
unprimed quantities). We obtain a term proportional to the number of molecules N ,
i.e., there is a collective effect on the single-molecule energy barrier that is reminiscent
of the collective Rabi splitting, Nλ2 ∝ Ω2

R,col. Note that the collective change of the
energy barrier still depends on the molecule having a different permanent dipole moment
in the transition and minimum configuration. Furthermore, it requires the molecules
not participating in the reaction to have a non-zero permanent dipole moment and an
average global alignment, such that 〈cos θ〉 6= 0. This could be achieved by fixing the
molecular orientation by, e.g., growing self-assembled monolayers [329] or using DNA
origami [238, 330], or for molecules that can be grown in a crystalline phase, such as
anthracene [97] (although polar molecules tend not to grow into crystals with a global
alignment [331]). Another strategy to achieve alignment under strong coupling that
has been successfully used experimentally is to align molecular liquid crystals through
an applied static field [332]. However, for general disordered media such as polymers
or molecules flowing in liquid phase [134, 139], the angular distribution is typically
isotropic, leading to 〈cos θ〉 ≈ 0. In that case, our theory predicts that no collective effect
on reactivity should be observed unless the cavity itself induces molecular orientation
(see below). We note for completeness that the collective Rabi splitting depends on the
average of the squared z-component of the transition dipole moments, i.e., 〈cos2 θ〉, which
is nonzero unless all molecules are aligned perpendicular to the electric field of the cavity
mode, and equal to 1/3 for isotropic molecules.
In order to test the strength of the collective effect in real cavity, and to compare it

with the effect of direct (free-space) dipole–dipole interactions, we now treat a specific
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Figure 6.9: (a) Sketch of the model system of a collection of molecules distributed around a
metal nanosphere with a diameter of 8 nm. The molecules are placed randomly at distances
from 1 nm to 16 nm to the surface of the sphere, with the (permanent) dipoles aligned along
the direction of the field of the sphere’s z-oriented dipole mode. (b) Energy due to the dipole-
sphere (Eds) and dipole-dipole (Edd) interactions in the system within perturbation theory as
a function of number of molecules N , as well as their sum (Etot). (c) Change in energy barrier
and corresponding change in reaction rate at room temperature for the most strongly coupled
molecule, also resolved into contributions from dipole-sphere and dipole-dipole interactions. In
both panels (b) and (c), the slightly transparent lines correspond to different random realizations
of the system, with the averages in solid lines.

configuration, as depicted in Fig. 6.9a: A nanocavity represented by a metallic sphere
of diameter d = 8 nm, surrounded by a collection of Shin–Metiu molecules, located at
distances from 1 nm to 16 nm from the sphere. We place a collection of up to N = 6000

molecules at random positions within that volume, imposing a minimum distance of
1.5 nm between the molecules.

Let us first discuss the treatment of the spherical nanocavity. We describe the metal
sphere4 it using a Drude dielectric function, which allows us to approximate it as a
three-mode cavity; the dipolar localized surface plasmon resonances aligned along x, y,
and z [124, 333]. Higher order multipole modes only couple significantly to emitters that
are very close to the surface [314, 334]. In this regime we can treat the nanosphere as
a point dipole, in which the direction-independent polarizability of the sphere is given
by [335]

αS(ω) = a3 ε(ω)− 1

ε(ω) + 2
, (6.29)

where a is the radius of the sphere. We can then consider two general models for the
4Note that the description used here can also represent a dielectric sphere with a single resonance,
such as a phonon mode.
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dielectric function. The first is a metallic Drude model dielectric function without losses,
εm(ω) = 1−ω2

p/ω
2. The polarizability of the sphere can then be rewritten as

αS(ω) =
a3ω2

0

ω2
0 − ω2

, (6.30)

where ω0 = ωp/
√

3. This is identical to the polarizability of a single-mode quantum
oscillator at frequency ω0 with transition dipole moment µeg =

√
ω0a3/2 [210],

αq(ω) = µ2
eg

(
1

ω0 − ω
+

1

ω0 + ω

)
=

a3ω2
0

ω2
0 − ω2

. (6.31)

Here, spherical symmetry implies that there are three degenerate quantum oscillators,
corresponding to the quantized localized surface plasmon resonances in this case, directed
along three orthogonal axes (e.g., x, y, and z). The second possibility is that the dielectric
function is instead given by Lorentzian function representing a material resonance (e.g.,
a phonon mode) at frequency ωph and with resonator strength characterized by ωf , i.e.,
ε(ω) = 1 +

ω2
f

ω2
ph−ω2 , we again get the same polarizability by using ω2

0 = ω2
ph +

ω2
f

3
and

µeg = ωf

√
a3

6ω0
, with the quantized mode now corresponding to a localized surface phonon

polariton resonance.
We furthermore assume that all molecules are aligned perfectly with the electric field

of the z-oriented dipolar mode of the sphere. In this configuration, the sum over x-
and y-oriented fields at the origin cancels out for large N . For these directions, there
is thus no Debye-like collective effect, and we can restrict our attention to just a sin-
gle mode of the sphere (the z-oriented dipole mode). For the sake of completeness, we
additionally check explicitly that solving the full electrostatic problem, i.e., including
all modes of the sphere by using the method of image dipoles using the expressions in
Eq. (6.22), gives very similar results to the ones presented here. As mentioned above,
within perturbation theory, where the Debye-force-like contribution can be understood
within a fully electrostatic picture, it is straightforward to include the direct (free-space)
permanent-dipole–permanent-dipole interaction, as it is simply a further additive electro-
static contribution. In Fig. 6.9b, we show the total electrostatic energy of the system, as
well as the relative contributions due to molecule–sphere and direct molecule–molecule
interactions, as a function of N . For the configuration considered here, for which we
have not performed any optimization of total energy, the dipole–dipole interactions give
a positive contribution to the total energy that is significantly larger than the collective
dipole–sphere interaction. The relative strength of dipole–dipole and dipole–sphere in-
teractions depends on the details of the configuration, and we have checked that, e.g.,

146



6.5 Collective effects

it is also possible to maintain the same collective interaction while obtaining an overall
negative contribution from dipole–dipole interactions by not choosing random positions
as we did for simplicity.

In contrast to the total energy, the change in energy barrier predicted by Eq. (6.27)
for the most strongly coupled molecule of the ensemble is dominated by the (collective)
sphere–dipole interactions, as shown in Fig. 6.9c. The barrier height indeed increases ap-
proximately linearly with N , with changes of up to ≈ 0.09 eV due to the cavity-mediated
interaction, and an associated suppression of the reaction rate by a factor of ≈ 30 at
room temperature. In the geometry treated here, the energy shift of the target molecule
due to dipole–dipole interactions with the other molecules also increases linearly with
N , as the molecular dipoles combine to all act in the same direction at the sphere loca-
tion, with an effect that is roughly half of the cavity-mediated interaction. As mentioned
above, the details depend strongly on the configuration and cavity properties, and in
particular, it is also possible to choose configurations where the direct dipole-dipole in-
teractions dominate. While a more exhaustive treatment is beyond the scope of this
article, we mention that in initial explorations, we did not find any simple configuration
where the cavity-mediated interactions were significantly larger than direct dipole–dipole
interactions.

While the barrier height increases here, the effect we predict can also lead to a decrease,
for example in the case that the transition-state dipole moment is larger than in the
minimum configuration, cf. Eq. (6.28). This would be expected, e.g., in dissociation
reactions in which the molecule splits into two partially charged fragments, and is also
seen for the back reaction from the right to left minimum in the Shin–Metiu model for
the case that all other molecules are in the leftmost minimum (see Fig. 6.10).

For comparison, Fig. 6.10 shows the effect of average alignment for the sphere-molecule
system considered above, for the case of N = 6000 molecules corresponding to a molecu-
lar density of ≈ 2 ·108 µm−3. It displays the CBO PES within second-order perturbation
theory as a function of R1, with all other molecules fixed in the minimum configura-
tion, and along the photonic minimum q = qm. For 〈cos θ〉 = 1, this demonstrates that
the collective cavity effect on the surface is significant, with the position of the criti-
cal points shifting compared to the bare molecule. For the Shin–Metiu model studied
here, the barrier height is actually increased compared to the approximate prediction
Eq. (6.27), which does not take into account these shifts. In contrast, when there is no
average orientation, 〈cos θ〉 = 0, the effect on the surface is minimal and is reduced to
the single-molecule result.

The single-molecule energy shifts we predict for perfect alignment can be significant.
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Figure 6.10: Alignment dependence of the cavity Born–Oppenheimer PES along the pho-
tonic minimum path qm for the molecule in Fig. 6.9(c), with all other molecules fixed to the
equilibrium position Rmin.

This implies that the molecules, if they are free to rotate in place, could lower their
energy by aligning with the electric field of the cavity mode, which could possibly lead
to self-organization (for the example system above, this also requires breaking of the
overall spherical symmetry). The details of this effect depend on the precise setup, such
as the cavity material and shape, molecular and solvent properties, etc., and would
require a more complete treatment taking thermodynamical effects and free energy into
account [336, 337], which is beyond the scope of the current work. However, we mention
that it has recently been shown that strong coupling and the associated formation of
polaritons itself could lead to alignment due to the associated decrease of the lower
polariton energy, provided that a significant fraction of molecules are excited to lower
polariton states [338, 339]. Although thermal excitation can be efficient for vibrational
strong coupling due to the relatively low energies of vibro-polaritons, on the order of a
few times the thermal energy kBT , it should be noted that the arguments in [338, 339]
do not directly translate to thermal-equilibrium situations. In that case, a change in
state energy due to improved orientation also leads to a change in population, with the
average energy per degree of freedom staying constant and thus no net energy gain.

Finally, we mention that in contrast to the single-molecule case, the generalization of
the above arguments to many cavity modes is not straightforward, and the results are
thus not directly applicable to, e.g., Fabry–Perot cavities with a continuum of modes
following a dispersion relation as a function of the in-plane wave vector, as employed
in existing experiments [139, 140, 142, 177]. Our results indicate that solving the elec-
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trostatic problem (where all modes are implicitly taken into account) should predict
the changes in energy barriers, but, e.g., the scaling with number of molecules is not
immediately obvious, and as mentioned above, statistical effects should be treated more
carefully. Only for the special case that all modes have the same electric field distribution
(e.g., different dipolar resonances of a small nanoparticle), the sum over modes can be
performed straightforwardly.

6.6. Modifications of the ground-state structure
In this last section we discuss the influence of the cavity on the equilibrium configuration
of the molecules. The theory developed in this chapter is very well-suited to study this
kinds of changes. For the single molecule case, it is straightforward to tackle this problem
by looking at the condition for critical points in Eq. (6.15)b, which states that the change
in the equilibrium configuration is given by the equation ∂RVg(R)−λ2µg(R)∂Rµg(R) = 0.
Although this depends on the specifics of the molecule, we can still estimate the change
around the bare-molecule equilibrium position by doing a harmonic approximation for
the ground-state PES, i.e., Vg(R) ≈ Vg(R)+ 1

2
Mω2

ν(R−R0)2, in which, for simplicity, we
consider only one internal degree of freedom. For the dipole moment, we can do a first-
order expansion, i.e., µg(R) ≈ µg(R0)+∇Rµg(R0)·(R−R0), which is equivalent to limit
the molecule to single-phonon transitions [131]. Here, we consider only the projection
of the dipole moment in the direction of the electric field µg(R) ≡ µg,ε(R) = µg(R) · ε.
The new equilibrium configuration is modified in the field direction is

R0,new ≈ R0 +
λ2

Mω2
ν

µg(R0)∇Rµg(R0) +O(λ4). (6.32)

We see that the field generates a correction to the original minimum-energy configuration
that depends both on the equilibrium dipole moment and on its first derivative, related
to the vibrational transition dipole moment.

In the case for N molecules we get conditions like Eq. (6.15)b for every molecule. From
this follows a set of coupled differential equations that needs to be solved in order to
find the new minimum-energy configuration R0 for each molecule. We can nevertheless
approximate the result by considering a small correction to R0 of the bare-molecule, and
thus assuming that, with the exception of the i-th molecule, all are at the equilibrium
R0. This results in the condition

∂Ri
Vg(Ri)− λ2

iµg(Ri)∂Ri
µg(Ri)− λiλ̄(N − 1)〈cos θ〉′µg(R0)∂Ri

µg(Ri) = 0, (6.33)
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for the molecule i. Note that this expression contains the single-molecule critical-point
condition plus a contribution that comes from the remaining N − 1 molecules, and
that is most relevant when the remaining molecules are completely aligned with the
i-th molecule, i.e., if 〈cos θ〉′ = 1. In the following we only discuss this scenario, as the
discussion of disordered dipoles is similar to the one of section 6.5. Furthermore, we also
assume that all molecules have the same coupling strength so that λ̄ = λ. By again
approximating the minimum of the bare-molecule PES as a harmonic oscillator, and
considering only linear dependence on the ground-state permanent dipole moment, we
see that the change of the equilibrium configuration is given by

R0,new ≈ R0 +N
λ2

Mω2
ν

µg(R0)∇Rµg(R0) +O(λ4). (6.34)

This result is reminiscent of the expression in Eq. (6.28), where there is a collective
enhancement granted that the remaining molecules have an average global alignment.
Note that the single molecule feels the electric field produced by the cavity dipole, which
is induced by N aligned dipoles. This results in a natural enhancement of the electric
field of N compared to the single-molecule case. This is similar to the effect of an external
electric field, which it is known to strongly impact molecular geometries [340, 341]
Note that the new equilibrium configuration does not depend explicitly on the photon

frequency. We analyzed the role of the reaction rates with the frequency in section 6.3,
where we see that there are no appreciable changes for high or low photon frequencies.
However, we know that within the CBOA, the photon is treated adiabatically, and the
method will be more accurate for ωc → 0 (e.g., in vibrational strong coupling). Therefore,
in the following we study structural changes from a theoretical approach based on the
PoPES, used in previous chapters. In this picture, the photonic DoF is discrete, so the
electronic–photonic Hamiltonian reads

Ĥe−ph = Ĥe + ωcâ
†â+ E1ph · µ̂(â† + â), (6.35)

where E1ph is the electric field amplitude in the cavity. We now use this Hamiltonian
in order to find the ground-state PoPES of the system by doing perturbation theory.
The energy shift depends on a sum that runs over states |i, n〉, where i is the electronic
state index and n the photon number. The interaction Hamiltonian E1ph · µ̂(â†+ â) only
allows single-photon transitions, so that in second-order perturbation theory the number
of photons is fixed to n = 1. This leads to the perturbed ground state

Ṽg(R) = Vg(R)− E2
1ph

∑
i

|µig(R)|2

Vi(R)− Vg(R) + ωc
+O(E4

1ph). (6.36)
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We can see that for i ≡ g we get the Debye contribution −E2
1phµ

2
g

ωc
= −λ2

2
µ2

g obtained
above. We rewrite the ground-state energy as

Ṽg(R) = Vg(R)− λ2

2
µ2

g(R)− λ2

2
ωc
∑
i 6=g

|µig(R)|2

Vi(R)− Vg(R) + ωc
, (6.37)

where we can identify the second term as the usual London dipole–dipole interaction.
Note that in the adiabatic limit of the CBOA, where the electronic energies are much
larger than the photon frequency, i.e., Vi(R)−Vg(R)� ωc, we exactly recover the result
of Eq. (6.19). More importantly, since in this picture the surfaces are hybrid electronic–
photonic states with parametric nuclear dependence (as opposed to the purely electronic
states with parametric photonic–nuclear dependence of the CBOA), the London contri-
bution directly influences the PES instead of the zero-point energy. The new equilibrium
configuration therefore includes changes due to the cavity-induced London forces.

It is straightforward to approach the many-molecule scenario by doing perturbation
theory on the general Hamiltonian of Eq. (4.4). In this case, it is easy to see that the
change in the ground-state PoPES is given by

Ṽg(Rt) =
∑
i

Vg(Ri)−
1

2

(∑
i

λiµg(Ri)

)2

− 1

2
ωc
∑
i

∑
j 6=g

λ2
i |µjg(Ri)|2

Vj(Ri)− Vg(Ri) + ωc
. (6.38)

Again, this equation is in agreement with the results of section 6.5 and we can there-
fore extract the same conclusions for the energy changes. In order to analyze the in-
fluence on the equilibrium configuration, we assume that all but one molecule are
in the equilibrium position R0. This naturally leads to Eq. (6.33) plus a new term
−λ2

2
ωc
∑

j 6=g
|µjg(Ri)|2

Vj(Ri)−Vg(Ri)+ωc
. We note that this new term does not depend on the num-

ber of molecules but rather only on the single-molecule coupling. In the limit of a very
large number of molecules, while keeping the Rabi splitting ΩR fixed, the single-molecule
coupling goes to zero, and therefore the effect of the cavity London interaction will be
negligible.

We thus find that the influence of strong coupling on any specific observable is not
immediately obvious, and has to be checked case by case. For some properties, the
molecules will behave as if they feel the full collective coupling ΩR, while for others,
they will show only the change induced by the single-molecule coupling λ [143, 292].
These results are also compatible with the experimental observation that the vibrational
frequencies in surface-enhanced Raman scattering, which probe the ground-state PES,
are not strongly modified under strong coupling [342].
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6 Cavity ground-state chemistry

6.7. Conclusions
In this chapter we demonstrated the possibility of modifying ground-state chemical re-
actions and molecular properties in hybrid cavity-molecule systems without an external
input of energy, motivated by experimental results showing this for vibrational strong
coupling [139, 142]. By treating a simple model system, the Shin–Metiu model, we were
able to show how full thermally driven reaction rates can be significantly modified under
strong light-matter interactions. We then determined that this change can be interpreted
through classical transition state theory, i.e., by the change in the height of an effective
energy barrier (or activation energy) by working within the cavity Born–Oppenheimer ap-
proximation. This approximation is particularly accurate for treating vibrational strong
coupling, where the cavity frequency is much smaller than the electronic energies. We
then use perturbation theory in order to obtain simple analytic expressions relating the
effective barrier heights to purely ground-state molecular properties, namely the uncou-
pled ground-state PES, dipole moment, and polarizability of the molecule. We discuss
that within second-order perturbation theory, the energy shifts determining the barrier
height on the CBO PES can be directly related to well-known intermolecular forces, i.e.,
the Debye and London forces, and more generally to Casimir–Polder interactions.
We stress that while perturbation theory allows us to make connections to well-known

results, our approach generalizes Casimir–Polder forces beyond the perturbative regime
and applies for any coupling strength. Additionally, we have shown explicitly that the
emergence of vibrational strong coupling does not affect the validity of the derived
expressions for the effective energy barriers. At the same time, the CBOA provides
a straightforward way to connect to well-known theories of chemical reactivity. The fact
that the energy shifts obtained here become appreciable for realistic nanocavities with
strongly sub-wavelength field confinement and thus sufficiently large λ demonstrates that
the (generalized) van-der-Waals forces due to the interaction of the molecular dipole with
the polarization it induces in the cavity can become strong enough to lead to significant
changes in chemical reactivity.
We additionally found that on the single-molecule level, the effects discussed above

do not rely on any particular relation between the cavity photon frequency ωc and the
vibrational transitions in the molecule ων , and thus in particular not on the formation of
polaritons (hybrid light-matter states). This is consistent with the interpretation of the
energy shifts as generalizations of Casimir–Polder interactions beyond the perturbative
regime. We also showed that the small modulation of the reaction rate as a function of
ωc that is observed numerically can be understood by simple adiabatic approximations,
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and again is not related to polariton formation.
We demonstrated the applicability of our approach for a realistic multi-mode cavity, a

nanoparticle-on-mirror setup [38], and found that the effective single-molecule coupling
strength in this case becomes significant (corresponding to a mode volume of ≈ 2 nm3)
even though the mode volume of the main optically active mode is significantly larger
(≈ 40 nm3). We furthermore applied our theory to a real molecule, 1,2-dichloroethane,
and showed that reaction rates can be both suppressed and enhanced depending on the
relative value of the molecular dipole moment at the critical configurations (local minima
and saddle points of the PES). A cavity could thus serve as a catalyst or as an inhibitor
of a ground-state reaction, and could even alter the global equilibrium configuration of
the molecule, all without any kind of external energy input, with all reactions simply
driven by thermal fluctuations. This represents a potential way to efficiently optimize
the desired yield of a molecular reaction.

For the case of many-molecule strong coupling, where the single-molecule coupling λ
is typically so small that the single-molecule effects described above are negligible, we
demonstrated that the PES and reaction barriers can be significantly modified by collec-
tive effects provided that the permanent dipole moments of the molecules are oriented
with respect to the cavity mode field, such that they induce an overall static electric
field. However, it should also be noted that similar effects could be achieved by direct
dipole–dipole interactions if one manages to align all molecules such as to create a strong
field at the position of a single molecule. An interesting open question is whether the
cavity-mediated interactions could induce alignment in materials that do not show this
in the absence of the cavity, or if direct dipole–dipole interactions would prevent this.

We lastly analyze how the cavity modifies the ground-state nuclear structure. We
again find that the Debye and London interactions with the cavity have an impact on the
equilibrium nuclear configuration. We furthermore discuss the fundamental limitation in
the CBOA for calculating the effect of the London forces on the equilibrium configuration.
We thus analyze the same problem from a picture of polaritonic potential energy surfaces,
which is consistent with the CBOA approach when the cavity frequency is very small.
We find that the influence of the cavity induces collective phenomena for the Debye
contribution and single-molecule effects for the London interaction.

Finally, it should be noted that we have throughout assumed that the whole system
is in thermal equilibrium, i.e., that the effective temperature is identical both for the
molecules and the cavity EM mode. This implies that system-bath interactions do not
have to be explicitly modeled, as the system can simply be assumed to be at a given
temperature (as explicitly included in the quantum rate calculations and TST). This
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6 Cavity ground-state chemistry

assumption would break down if the internal vibrational temperature of the molecules is
different from the temperature of the thermal radiation bath that the cavity is coupled to.
In that case, the effective temperature of the system could potentially become an average
of the internal and external bath temperatures. In particular, the effective temperature
relevant for a given reaction could depend on whether vibrational motion along that
reaction coordinate is hybridized with the cavity mode, such that the external black-body
radiation bath would conceivably couple more efficiently to that mode than to others.
Such effects have been studied for Casimir–Polder forces, where resonant contributions
that exactly cancel at thermal equilibrium can become important in non-equilibrium
situations [343, 344], and possibly give rise to additional collective effects [345].
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7 | General conclusions and
perspective

English
In this thesis we have focused on studying modifications in the properties and reactivity
of organic molecules coupled to cavities hosting confined electromagnetic modes. The aim
of these works is to develop a fundamental theory motivated by the various experimental
demonstrations of polaritonic chemistry achieved in recent years, both for excited-state
molecular processes and thermally-driven ground-state reactions. The work of chapter 3
is devoted to the first step towards the development of this theory, i.e., combine the usual
description of the complexity of organic molecules with theoretical approaches of CQED.
We demonstrate the potential of this approach to understand the molecular structure
and properties in electronic excited states. The theory is then generalized to an arbi-
trary number of molecules coupled to a cavity in chapter 4, where the arising collective
phenomena of the system are discussed. Then, in chapter 5 we present two examples
of photochemical reactions that can be manipulated by entering the strong coupling
regime. Finally, chapter 6 is devoted to theoretically study cavity-induced modifications
in the ground state, demonstrating the possibility of achieving strong modifications of
the molecular energy landscape. In this final chapter we present the overall conclusions
of the work developed in this thesis, together with a brief overview of the current status
of the related lines of research.

General theory of polaritonic chemistry

One of the fundamental goals of this thesis is the expansion of our theoretical under-
standing of polaritonic chemistry. Several chapters focus on establishing a theory that
combines CQED and chemistry in order to gain insight of how the cavity can influence
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the properties of organic molecules. We study both excited and ground states of the
hybrid light–matter system with different but related approaches. In the following, we
first review the conclusions related to excited-state phenomena in polaritonic chemistry,
and then for the ground-state study, as well as discuss the direction towards a more
complete theory of polaritonic chemistry.
In chapter 3 we explore the use of the Born–Oppenheimer approximation in a hybrid

light–matter system. We find that this is still a good approach in electronic strong cou-
pling and can be used to generalize the concept of PES to polaritonic PES (PoPES). This
picture is a useful platform to study the chemical properties in organic polaritons and to
understand the nature of their various nonradiative processes in terms of nuclear relax-
ation on the PoPES and through nonadiabatic transitions between different polaritonic
states. The description is further formalized in chapter 4, where an extension to treat an
arbitrary number of molecules and excitations is presented. This allows to study the dif-
ferent collective phenomena that arise in strong coupling with an ensemble of molecules,
such as the collective conical intersections and the collective protection effect. The latter
phenomenon is crucial in the modification of the excited-state structure of the system
and thus the primary responsible of influencing the different photochemical reactions
studied in chapter 5. This chapter is focused on the study of some possible modifica-
tions of photochemistry, such as suppression of excited-state processes, and triggering of
multiple photochemical reactions on many molecules after photoabsorption of a single
external photon.
Throughout this thesis we establish the potential of the PoPES picture for studying

various excited-state processes, providing specific examples of photochemical reactions
with simplified molecular models. This theory is very flexible and its principles allow
to increase the complexity of both the electromagnetic and molecular components. For
instance, this theory can be interfaced with state-of-the-art quantum chemistry codes in
order to make accurate predictions on particular reactions. Various works show this for
different molecules and computational methods, such as the multi-configuration time-
dependent Hartree method for propagation of multi-dimensional wavepackets [346] and
an on-the-fly surface hopping semiclassical technique for calculating the dynamics on
the PoPES [159, 168]. In the work of Luk et al. [168], rhodamine molecules were charac-
terized in detail using a quantum mechanics/molecular mechanics (QM/MM) approach,
where the most relevant part of the big molecule for characterization of the photophysics
was treated quantum mechanically, while the remaining part, as well as the molecular
solvent, was described through classical molecular dynamics. This description allows to
fully account for nonradiative losses of the excitation, while spontaneous decay can be
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accounted for by including stochastic jumps to the ground state.
The inclusion of various coherence and excitation loss mechanisms is an important

goal in a general theory of polaritonic chemistry due to the important role that disorder,
decay, and decoherence play in organic polaritonics. While these can arise naturally from
a detailed-enough microscopic theory (see for example the QM/MM approach mentioned
above, or using a detailed quantum electrodynamical density functional theory approach
[347, 348]), this rapidly becomes computationally infeasible as the system grows in size,
and more sophisticated open-quantum system theories are required. Previous attempts
to combine the picture of standard PES with losses have been made. For example, PES
can be generalized to complex PES [349], where the imaginary part represents the decay
in time of the state. Thus, both real and imaginary PES surfaces can intersect, leading to
a variety of novel effects. Coupled system–bath approaches can also be used to simulate
the effect of weakly coupled vibrational degrees of freedom such as the environment of a
molecule in a condensed phase. In this context, quantum chemistry methods have been
combined with Redfield theory to compute the nonadiabatic photochemical dynamics of
the pyrrole–pyridine hydrogen-bonded complex [350]. Analogous approaches can readily
be implemented in polaritonic chemistry in order to fully understand the role of losses
in these processes. The final objective of a general theory of polaritonic chemistry is to
fully integrate the methods and understanding of both chemistry and QED to develop
a unified insight on how to modify chemical properties in organic molecules.

Finally, we devote chapter 6 to the theoretical study of cavity-modified ground-state
molecular structure and reactivity. In this chapter we thoroughly discuss chemical changes
in terms of the cavity Born–Oppenheimer approximation. This approach is related to
the picture of PoPES, and therefore offers similar advantages. The microscopic theory
that we develop connects the predicted changes in chemical structure and reactivity
with off-resonance Casimir–Polder interactions, and does not require the formation of
polaritons. We note that current experiments of cavity-modified ground-state chemistry
observe that the cavity effects are resonance-dependent [139, 140, 142, 177]. At the time
of writing this thesis, only another theoretical work has approached this problem [180].
This work finds a resonant condition for a specific theoretical model where only incre-
ments in reactivity can be obtained, however the experiments observed both catalysis
and suppression of chemical reactions. The mechanism responsible for the experimentally
observed resonance-dependent changes in reactivity thus remains unknown, and further
theoretical work is needed to uncover it. More complete descriptions are required to
understand these phenomena, by, e.g., explicitly including the role of the solvent (which
is known to play a role [177]), or using a thermodynamical description that does not
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necessarily assume thermal equilibrium between cavity and molecules.
Nevertheless, our theory provides a platform to manipulate chemistry in plasmonic

nanocavities. In chapter 6 we provide examples for realistic molecules, using quantum
chemistry packages to compute molecular properties, and for realistic cavities, exploit-
ing electrostatics to fully take into account all the EM modes coupled to the molecule.
Our latest work [179], not featured in this thesis, focuses on studying various chem-
ical systems, demonstrating cavity-induced catalysis and control over the spin states
and transition temperature in spin-crossover complexes. We believe that readily avail-
able cavities, such as the nanoparticle-on-mirror [38], could be exploited to achieve the
few-molecule chemical control predicted by our theory.

Applications of cavity-modified chemistry
Due to the infancy of the field of polaritonic chemistry, there is still a need to apply this
theory to more realistic and bigger systems, which, as discussed above, will require com-
bining it with additional techniques to achieve a more complete description. Accordingly,
most of this thesis has been focused on establishing the appropriate theoretical frame-
work. In chapter 5 we use this theory to predict and describe different effects that may
be exploited in experiments, and, in the long term, in possible technological applications.
Particularly, we describe the effect of collective suppression in strong coupling, which
leads to important rate reductions in excited-state processes. Some recent studies have
demonstrated experimentally that this mechanism can significantly influence the inter-
system crossing rates between singlet and triplet states [141, 172]. In the triplet state,
interactions with external triplet oxygen can lead to bleaching of the molecule. There-
fore, this suppression can help with stabilization of highly reactive molecules, reducing
photodegradation both in plasmonic systems [141] and in planar cavities [172].
Additionally, in chapter 5 we presented a proof-of-principle study showing the possi-

bility of triggering several photochemical reactions among many molecules with a single
external photon. This is possible for the molecular model treated, which displays an
energy landscape typical in organic molecules used for energy storage in solar cells [278].
This energy is stored in a metastable nuclear configuration with a very long lifetime,
thus making this system good for storing energy, but not for retrieving it. In our study
we demonstrate that, in strong coupling, this same molecular system can be good for
retrieving energy and not for storing it, as photoabsorption of a single photon can trigger
multiple energy-releasing back-reactions. By reversibly bringing the system in and out
of resonance, by, e.g., moving a mirror that changes the photon frequency, it could be
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feasible to control whether the system stores energy or releases it.
The nonadiabatic dynamics in organic polaritons that we explore in chapters 3 and 4

also offer a wide range of possibilities. The nonadiabatic transitions and conical intersec-
tions that are induced in strong coupling are closely related to the so-called light-induced
conical intersections in strong laser fields [351]. The use of light to steer molecular dynam-
ics is the main goal of the field of coherent control [352], in which specifically tailored EM
fields play the role of “photonic reagent” or “photonic catalyst”. This approach accom-
plish strong interactions with large number of photons n, exploiting the enhancement of
the laser electric field amplitude as ∼

√
n. In strong coupling, the basic properties of this

phenomenon are instead achieved using the large strength of a single photon. Therefore,
polaritonic chemistry can considerably learn from the field of coherent control, which has
enabled manipulation of the dynamics of several molecular reactions [353, 354] and con-
trol over dissociation in molecules [351, 355]. Polaritonic chemistry can potentially offer
similar chemical control, while avoiding some of the drawbacks of strong laser physics,
such as undesired multiple photoabsorptions and ionizations that often limit the possible
utility of coherent control.

In the next few years the potential of polaritonic chemistry will surely be further ex-
plored. The possibility of manipulating the chemical and material properties of organic
systems offer plenty of opportunities. For example, it could offer the catalysis of reac-
tions for which no conventional catalytic method is known, or to do so cheaper and
more efficiently than in standard catalysis. This capability could also lead to deeper
understanding of many important processes in nature, such as the photophysics in pho-
tosynthesis and human vision. Nature often controls these systems by manipulating the
energy landscape of the molecules with a surrounding protein [356]. Strong coupling
could offer a novel alternative to manipulate these crucial processes. Furthermore, the
robustness of organic polaritons opens possibilities towards room-temperature quantum
technologies. Polaritonic chemistry would offer an additional tool to control and tune the
properties of organic systems in order to optimize its use in technological applications.

Ending remarks
The field of polaritonic chemistry has demonstrated to be an interesting topic that has
attracted increasingly more interest in the past recent years. It offers a novel approach
for modifying the properties of organic systems by using cavities to alter the electro-
magnetic vacuum that dresses and defines the molecules. This is still a very young field
where more experimental studies are required in order to verify and challenge current
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theoretical predictions. At the same time, theory must provide the necessary tools to
understand these experiments, by allowing the treatment of more complex descriptions
of the system. In this context, this thesis has been focused on addressing this problem,
by providing a satisfactory theoretical method to describe organic polaritons. We build
on the foundations of chemistry and QED in order to provide an initial step towards a
more complete theory of polaritonic chemistry. In the long term, a goal of the field will
certainly be to investigate the use of cavity-modified chemistry for practical applications.
The interdisciplinary aspect of polaritonic chemistry is one of its greatest strengths.

Nanophotonics and quantum chemistry are combined in this emergent field with the
promise of great fundamental and technological development. As different scientific com-
munities notice this innovative concept, the influx of new ideas will ensure a boost of
our understanding of cavity-modified chemistry. A new generation of quantum technolo-
gies and creative ways to manipulate complex chemical systems could be possible by
exploiting the characteristics of light in the dark.
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Castellano
En esta tesis nos hemos centrado en el estudio de cambios en las propiedades y reac-
tividad de moléculas orgánicas acopladas a cavidades con modos electromagnéticos. El
objetivo de estos estudios es el desarrollo de una teoría que explique las distintas de-
mostraciones experimentales de química polaritónica conseguidas en los últimos años,
tanto para procesos moleculares en el estado excitado como reacciones activadas térmi-
camente en el estado fundamental. El trabajo realizado en el capítulo 3 está dedicado al
primer paso hacia el desarrollo de dicha teoría, es decir, combinar la descripción usual
de la complejidad de las moléculas orgánicas con los enfoques teóricos de la electrod-
inámica cuántica en cavidades (CQED). Demostramos el potencial de este método para
comprender la estructura y las propiedades moleculares en los estados excitados elec-
trónicos. Después, en el capítulo 4, generalizamos esta teoría a un número arbitrario de
moléculas acopladas a una cavidad, discutiendo también los fenómenos colectivos emer-
gentes. En el capítulo 5 presentamos dos ejemplos de reacciones fotoquímicas que pueden
ser manipuladas al introducirlas en el regimen de acoplo fuerte. Finalmente, el capítulo
6 está dedicado al estudio teórico de modificaciones en el estado fundamental inducidas
por la cavidad, donde demostramos la posibilidad de conseguir grandes cambios en la es-
tructura energética de las moléculas. En este capítulo final presentamos las conclusiones
definitivas del trabajo desarrollado en esta tesis, así como un resumen breve del estado
actual de las líneas de investigación relacionadas.

Teoría general de la química polaritónica
Uno de los objetivos principales de esta tesis es expandir nuestro conocimiento teórico
de la química polaritónica. Varios capítulos están enfocados en consolidar una teoría
que combine CQED y química con el fin de entender la influencia de la cavidad en
las moléculas orgánicas. Analizamos los estados excitado y fundamental del sistema
híbrido luz–materia, cada uno con un método distinto, siendo ambos análogos entre sí.
A continuación, repasamos las conclusiones para los estados excitado y fundamental y
analizamos el camino hacia una teoría general y completa de la química polaritónica.

Este camino empieza en el capítulo 3, donde exploramos la posibilidad de usar la
aproximación de Born–Oppenheimer en un sistem híbrido luz–materia. Aquí descubrimos
que este enfoque sigue siendo bueno en el régimen de acoplo fuerte y puede ser utilizado
para generalizar el concepto de superficies de energía potencial (PES) al de superficies
polaritónicas de energía potencial (PoPES). Este método es una manera excelente de
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estudiar las propiedades químicas de los polaritones orgánicos y de entender la naturaleza
de los múltiples procesos no radiativos en términos de relajación de los nucleos sobre las
PoPES y a través de las transiciones no adiabaticas entre estados polaritónicos diferentes.
Esta descripción es formalizada en el capítulo 4, donde la teoría es extendida para tratar
un número arbitrario de moléculas y de excitaciones. Esto nos permite estudiar los
fenómenos colectivos emergentes en conjuntos de moléculas en acoplo fuerte, como por
ejemplo las intersecciones cónicas colectivas o el efecto de protección colectiva. Esto
último es fundamental en la modificación de la estructura del estado excitado del sistema,
y por lo tanto es la razón principal por la cual las reacciones estudiadas en el capítulo 5
son alteradas. Este capítulo está enfocado en el estudio de algunos de los posibles cambios
en la fotoquímica, como por ejemplo la inhibición de procesos en el estado excitado, o
la desencadenación de múltiples reacciones fotoquímicas en diferentes moléculas después
de la absorción de un único fotón externo.
A lo largo de esta tesis hemos comprobado el potencial del método de las PoPES

para estudiar procesos en el estado excitado, dando ejemplos específicos de reacciones
fotoquímicas con modelos moleculares simplificados. Esta teoría es muy adaptable, ya
que sus principios permiten aumentar la complejidad de tanto la componente electro-
magnética como de la molecular. Por ejemplo, esta teoría puede enlazarse con técni-
cas de vanguardia de química cuántica computacional para conseguir así predicciones
precisas de reacciones particulares. Esto ha sido ya logrado en varios trabajos, que lo
demuestran para distintas moléculas y métodos computacionales, como con el método
multi-configuracional dependiente del tiempo de Hartree, utilizado para propagar paque-
tes de onda multi-dimensionales [346], y la técnica semiclásica de surface hopping, para
calcular la dinámica sobre las PoPES [159, 168]. En el trabajo de Luk et al. [168], se car-
acterizan moléculas de rodamina en detalle usando un método combinado de mecánica
cuántica/mecánica clásica (QM/MM), donde, para describir la fotofísica del sistema, la
parte principal de la molécula es tratada cuánticamente, mientras que el resto de átomos,
incluyendo el solvente molecular, es descrito mediante dinámica molecular. Esta descrip-
ción permite tener en cuenta por completo las pérdidas de excitación no radiativas,
mientras que el decaimiento espontáneo se puede incluir añadiendo saltos estocásticos
hacia el estado fundamental.
La integración de mecanismos que consideren la pérdida de excitación y de coherencia

del sistema es un objetivo importante para una teoría general de la química polaritónica
debido al importante papel que juegan el desorden, el decaimiento, y la decoherencia
en polaritones orgánicos. Aunque una teoría microscópica suficientemente detallada in-
cluye esto de manera natural (por ejemplo, en el método QM/MM mencionado arriba,
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o usando una teoría de funcional de densidad electrodinámica detallada [347, 348]), esta
resulta una estrategia computacionalmente inviable a medida que el sistema aumenta
en tamaño, necesitando para esto una teoría de sistema cuántico abierto más refinada.
Actualmente existen trabajos que combinan el método de las PES estándar con pérdidas.
Por ejemplo, las PES pueden ser generalizadas a PES complejas [349], en donde la parte
imaginaria representa el decaimiento del estado en el tiempo. Así, tanto PES reales como
imaginarias pueden intersecar, lo cual puede causar múltiples efectos novedosos. Métodos
de sistema–baño acoplados también pueden ser utilizados con el fin de simular el efecto
de grados de libertad acoplados débilmente, como es el entorno de la molécula en fase
condensada. En este contexto, métodos de química cuántica son combinados con teoría
Redfield para calcular así la fotoquímica no adiabática de un complejo pirrol–piridina con
enlaces de hidrógeno [350]. Métodos similares pueden ser implementados en química po-
laritónica para así comprender completamente el papel de las pérdidas en estos procesos.
El objetivo final de una teoría general de química polaritónica es la integración total de
métodos y conocimiento de tanto química como QED para desarrollar un entendimiento
unificado de cómo modificar propiedades moleculares en moléculas orgánicas.

Finalmente, dedicamos el 6 al estudio teórico de las modificaciones en reactividad y es-
tructura molecular del estado fundamental inducidas por una cavidad. Aquí analizamos
en detalle los cambios químicos en términos de la aproximación Born–Openheimer de
cavidad. Esta está relacionado con el método de las PoPES y ofrece ventajas similares. La
teoría microscópica desarrollada conecta los cambios en estructura y reactividad química
con interacciones de Casimir–Polder fuera de resonancia, sin requerir la formación de po-
laritones. Cabe destacar que en las observaciones experimentales actuales observan una
dependencia de los efectos con la resonancia de la cavidad [139, 140, 142, 177]. En el
momento en el que se escribe esta tesis, tan sólo otro trabajo teórico ha abordado este
problema [180]. Este trabajo encuentra una condición de resonancia para un modelo
teórico específico donde sólo pueden obtenerse incrementos en la reactividad, sin em-
bargo los experimentos observan tanto catálisis como inhibición de reacciones químicas.
El mecanismo responsable de estos cambios en reactividad dependientes de la condición
de resonancia continua siendo desconocido, y por lo tanto se necesita más trabajo teórico
para descubrirlo. Para entender estos efectos, se necesitan descripciones más completas
del sistema, como por ejemplo, mediante la inclusión explicita del solvente (que efecti-
vamente parece jugar un papel [177]), o usando una descripción termodinámica que no
requiera considerar equilibriuo térmico entre cavidad y moléculas.

A pesar de ello, nuestra teoría ofrece una manera de manipular la química usando
nanocavidades plasmónicas. En el capítulo 6 aportamos ejemplos de moléculas realistas,
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utilizando paquetes de química cuántica, y de cavidades realistas, aprovechando la elec-
trostática para considerar así todos los modos electromagnéticos acoplados a la molécula.
Otro de nuestros trabajos [179], no incluído en esta tesis, está enfocado a estudiar varios
sistemas químicos, demostrando que la cavidad puede inducir catálisis en reacciones y
control sobre los estados de espín y la temperatura de transición en complejos de spin-
crossover. Aunque todavía no existen observaciones experimentales de estas recientes
predicciones teóricas, creemos que cavidades actualmente disponibles, como la nanopar-
ticula sobre espejo [38], pueden ser utilizadas para conseguir el control químico predicho
por nuestra teoría en unas pocas moléculas.

Aplicaciones de la química modificada por cavidades
Debido a que el campo de la química polaritónica es muy joven, existe todavía la necesi-
dad de aplicar esta teoría a sistemas más grandes y realistas, que, como se ha discutido
antes, requerirán una combinación con técnicas adicionales para lograr una descripción
más completa. Debido a esto, la mayor parte de esta tesis está enfocada a establecer
el marco teórico apropiado. En el capítulo 5 utilizamos esta teoría para predecir y de-
scribir diferentes efectos que pueden ser aprovechados en experimentos, y, a largo plazo,
en posibles aplicaciones tecnológicas. En particular, describimos el efecto de inhibición
colectiva en acoplo fuerte, que puede generar grandes reducciones en el ritmo de los pro-
cesos moleculares en el estado excitado. Algunos estudios recientes han demostrado ex-
perimentalmente que este mecanismo puede alterar significativamente las tasas de cruce
intersistema entre estados de singlete y triplete [141, 172]. En el estado de triplete, las
interacciones con el oxígeno triplete externo puede ocasionar el blanqueo de la molecula.
De esta manera, la inhibición descrita puede ayudar con la estabilización de moléculas
altamente reactivas, reduciendo la fotodegradación tanto en sistemas plasmónicos [141]
como en cavidades planares [172].
Además, en el capítulo 5 presentamos un estudio que es una prueba de principios

que demuestra la posibilidad de desencadenar varias reacciones fotoquímicas en muchas
moléculas con un único fotón externo. Esto es posible en el modelo molecular tratado,
que representa la típica estructura energética de moléculas orgánicas usadas para al-
macenamiento de energía en células solares [278]. Esta energía es almacenada en una
configuración nuclear metaestable con una vida media muy larga, lo cual hace que la
molécula sea muy buena para guardar energía, pero no para recuperarla. En nuestro
estudio demostramos que, en el regimen de acoplo fuerte, este mismo sistema molecular
puede ser bueno para rescatar la energia y no solo acumularla, ya que absorción de un
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único fotón puede activar múltiples reacciones que liberen energía. Poniendo el sistema
en resonancia y fuera de resonancia de manera reversible, por ejemplo, moviendo un es-
pejo que cambie la frequencia del fotón, podría ser viable controlar si el sistema almacena
o libera energía.

La dinámica no adiabática en polaritones organicos que exploramos en los capítulos 3
y 4 también ofrece un gran abanico de posibilidades. Las transiciones no adiabaticas y las
intersecciones cónicas introducidas en el regimen de acoplo fuerte están estrechamente
relacionadas con las intersecciones cónicas inducidas por luz con laseres de campo fuerte
[351]. El uso de la luz para dirigir la dinámica molecular es uno de los principales objetivos
del campo de control coherente [352], en el cual se utilizan campos electromagneticos
hechos a medida que juegan el papel de “catalizador fotónico” o “reactivo fotónico”. Este
método consigue interacciones fuertes con un gran número de fotones n, aprovechando
el incremento de la amplitud del campo electrico del laser como ∼

√
n. En el regimen

de acoplo fuerte, se consiguen las mismas propiedades básicas de este fenómeno usando
un único fotón suficientemente fuerte. Por este motivo, la química polaritónica puede
aprender enormemente del campo de control coherente, el cual ha posibilitado la ma-
nipulación de la dinámica de varias reacciones moleculares [353, 354], y el control de la
disociación de moléculas [351, 355]. La química polaritónica tiene el potencial de ofrecer
el mismo control químico, evitando a su vez los inconvenientes de la física de laseres de
campos fuertes, como por ejemplo múltiples absorciones o ionizaciones no deseadas que
a menudo limita la utilidad del control coherente.

En los próximos años sin duda se explorará más el potencial de la química polaritónica.
La posibilidad de manipular las propiedades químicas y materiales de sistemas orgáni-
cos brinda numerosas oportunidades. Por ejemplo, podría proporcionar la posibilidad
de hacer catálisis en reacciones para las cuales no se conocen métodos catalíticos con-
vencionales, o mejorar los métodos actuales haciendolos más baratos y eficientes. Esta
capacidad de la química polaritónica podría también llevarnos a una comprensión más
profunda de muchos procesos en la naturaleza, como por ejemplo la fotofísica de la foto-
síntesis o la visión humana. La naturaleza controla estos sistemas rodenado las moléculas
de una proteína que manipula su estructura energética [356]. El régimen de acoplo fuerte
puede ofrecer una alternativa novedosa para manipular estos cruciales procesos. Además,
la resistencia de los polaritones orgánicos abre posibilidades hacia tecnologías cuánticas
a temperatura ambiente. La química polaritónica podría ofrecer una herramienta adi-
cional para controlar y afinar las propiedades de sistemas orgánicos para así optimizar
su uso en aplicaciones tecnológicas.
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7 General conclusions and perspective

Observaciones finales
El campo de la química polaritónica ha demostrado ser un tema interesante que ha
atraído cada vez más interes en los últimos años. Este ofrece una novedosa manera
de modificar las propiedades de sistemas orgánicos mediante el uso de cavidades que
alteren el vacío electromagnético que envuelve y define a las moleculas. Este es un campo
todavía muy joven en el que se necesitan más estudios experimentales para así poder
verificar y retar las predicciones teóricas actuales. Así mismo, la teoría debe proveer
las herramientas necesarias para entender estos experimentos, permitiendo tratamientos
de descripciones cada vez más complejas del sistema. En este contexto, esta tesis ha
sido enfocada en tratar este problema, proporcionando un método teórico para describir
polaritones orgánicos satisfactorio. Nos basamos en los fundamentos de la química y
de la electrodinámica cuántica para iniciar el caminoo hacia una teoría completa de la
química polaritónica. Eventualmente, un objetivo del campo será analizar el uso de las
cavidades para modificar la química con aplicaciones prácticas.
La faceta interdisciplinaria de la química polaritónica es uno de sus puntos más fuertes.

Los campos de la nanofotónica y de la química cuántica se combinan en este campo
emergente con la promesa de un gran desarrollo fundamental y tecnológico. A medida
que distintas comunidades científicas adviertan esta idea innovadora, el flujo de nuevas
ideas estimulará nuestro conocimiento sobre la química modificada en cavidades. Una
nueva generación de tecnologías cuánticas y maneras de controlar sistemas químicos
complejos puede ser posible aprovechando las características de la luz en la oscuridad.
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Polaritonic chemistry is an emergent interdisciplinary 
field centered around the challenge of manipulating 
the properties and reactivity of organic molecules by 
strongly coupling them to the electromagnetic 
vacuum that surrounds them. This leads to the 
formation of polaritons, hybrid excitations that 
inherit characteristics from both light and organic 
molemolecules. 

This thesis is devoted to the theoretical study of 
molecular structure and reactivity in strong 
light–matter coupling. We develop a theory that 
combines quantum chemical and electrodynamical 
descriptions in order to investigate the phenomena of 
polaritonic chemistry. Our results demonstrate its 
potential to suppress or catalyze chemical reactions, 
as as well as opening new possibilities beyond standard 
chemistry.

Polaritonic chemistry
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